October 2019

St. Lawrence River Watershed Characterization Report

Prepared for Franklin County Soil & Water Conservation District

This plan was prepared with funding provided by the New York State Department of State under Title 11 of the Environmental Protection Fund.
TABLE OF CONTENTS

1 Introduction .. 9

2 Overview of the Watershed ... 10
 2.1 Evolution and Current Configuration of the Basin .. 10
 2.2 Subwatersheds .. 11
 2.3 Settlement and Development in the Watershed .. 18
 2.4 Existing Plans and Initiatives Related to Water Resources in the Study Area 20

3 Environmental Setting ... 22
 3.1 Water Resources ... 22
 3.1.1 Surface Water ... 22
 3.1.2 Wetlands .. 22
 3.1.3 Precipitation Patterns and Flooding .. 23
 3.2 Topography and Geology ... 24
 3.3 Soils .. 25
 3.4 Habitat .. 26
 3.5 Land Cover and Land Use ... 28

4 Community Characteristics .. 32
 4.1 Municipalities and Population ... 32
 4.2 Regulatory and Programmatic Environment .. 35
 4.2.1 Approach to Reviewing Local Laws, Plans, and Programs .. 35
 4.2.2 Gap Assessment as Related to the Desired State .. 36
 4.3 Water Use .. 36
 4.3.1 Drinking Water Sources ... 37
 4.4 Public Access and Recreation ... 39
 4.5 Infrastructure .. 39
 4.5.1 Dams .. 39
 4.5.2 Roads, Highways, and Railways ... 41
 4.6 Industries and Employment ... 42

5 Existing Water Quality Conditions ... 43
 5.1 Waterbody Inventory and Priority Waterbodies ... 43
 5.2 Section 303(d) List .. 45
6 Waterbody Impairments and Potential Sources of Pollution .. 49
6.1 Impairments to Designated Best Use ... 49
6.2 Impacts and Stressors Preventing Waterbodies from Meeting Their Best Uses 50
 6.2.1 Mercury ... 51
 6.2.2 Contaminated Sediment ... 51
 6.2.3 Acidic Waters .. 51
 6.2.4 Invasive Species ... 52
 6.2.5 Nutrients .. 54
 6.2.6 Excessive Plant and Algal Growth .. 54
 6.2.7 Sedimentation .. 55
 6.2.8 Pathogens ... 55
 6.2.9 Road Salt .. 56
6.3 Potential Sources of Stressors .. 56
 6.3.1 Regional Nonpoint Sources .. 57
 6.3.2 Nonpoint Local Sources ... 58
 6.3.3 Point Sources ... 61
6.4 Sensitive Areas ... 71
7 Emerging Issues ... 72
 7.1 Floodplain and Water-Level Management .. 72
 7.2 Climate Change ... 72
8 Data Gaps ... 74
9 References .. 75

TABLES
Table 1 Hydrologic Units and Area within the St. Lawrence River Watershed 12
Table 2 Climate Data, 2010 .. 23
Table 3 Land Cover, St. Lawrence River Watershed ... 29
Table 4 Crops and Livestock, St. Lawrence River Watershed .. 30
Table 5 Municipalities within the St. Lawrence River Watershed 32
Table 6 Class A and AA Waterbodies .. 38
Table 7 New York State Dam Classifications, St. Lawrence River Watershed 40
Table 8 High Hazard (Class C) Dams in the St. Lawrence River Watershed 40
Table 9 Priority Waterbodies Assessment of St. Lawrence River Streams and Lakes 45
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 10</td>
<td>NYS 303(d) Listed Waterbodies in the St. Lawrence River Watershed</td>
<td>46</td>
</tr>
<tr>
<td>Table 11</td>
<td>Target and Prevention Invasive Species</td>
<td>53</td>
</tr>
<tr>
<td>Table 12</td>
<td>Publicly Owned Treatment Works Permitted under NPDES</td>
<td>61</td>
</tr>
<tr>
<td>Table 13</td>
<td>Permitted CSOs</td>
<td>64</td>
</tr>
<tr>
<td>Table 14</td>
<td>Permitted MS4s</td>
<td>64</td>
</tr>
<tr>
<td>Table 15</td>
<td>Industrial Wastewater and Stormwater Sites Permitted under NPDES</td>
<td>65</td>
</tr>
<tr>
<td>Table 16</td>
<td>CAFOs Permitted under NPDES</td>
<td>67</td>
</tr>
</tbody>
</table>

FIGURES

Figure 1	HUC8 Areas, St. Lawrence River Watershed	12
Figure 2	WI/PWL Status of St. Lawrence River Watershed Waterbodies	44
Figure 3	Impairments or Stresses Impacting the Designated Best Use of Streams and Lakes	49
Figure 4	Pollutants and Stressors of Waterbodies	50
Figure 5	Potential Sources of Pollutants and Stressors	57

MAPS

Map 1	St. Lawrence River Watersheds (HUC8) in New York State	
Map 2	St. Lawrence River Watersheds (HUC8, 2016) in New York State	
Map 3	Upper St. Lawrence River Watershed (HUC8)	
Map 4	Oswegatchie River Watershed (HUC8)	
Map 5	Indian River Watershed (HUC8)	
Map 6	Grasse River Watershed (HUC8)	
Map 7	Raquette River Watershed (HUC8)	
Map 8	St. Regis River Watershed (HUC8)	
Map 9	Salmon River Watershed (HUC8)	
Map 10	Chateaugay-English River Watershed (HUC8)	
Map 11	Hydrography	
Map 12	Wetlands	
Map 13	Average Annual Precipitation	
Map 14	Topography/Elevation/Steep Slopes	
Map 15	FEMA Flood Zones	
Map 16	Surficial Geology	
Map 17	Bedrock Geology	
Map 18	Hydrologic Soil Class	
Map 19	Erosion Potential ...	
Map 20	Land Cover (NLCD 2011) ...	
Map 21	Ecological Zones ...	
Map 22	Agricultural Districts ...	
Map 23	Percent Imperviousness ...	
Map 24	Governance ...	
Map 25	Population Density ...	
Map 26	Water Withdrawals from Lakes, Reservoirs, and Wellheads ...	
Map 27	Energy Generation ...	
Map 28	NYSDEC Public Access Points ...	
Map 29	Infrastructure ...	
Map 30	PWL Status ...	
Map 31	Pollution Sources ...	
Map 32	Mines ...	
Map 33	Sensitive Areas ...	

APPENDICES

Appendix A Local Laws and Programs Affecting Water Quality
WWTP Wastewater Treatment Plant
1 Introduction

The St. Lawrence River watershed is the largest drainage basin in New York State, encompassing 5,600 square miles in northern New York (Map 1). In 2018, the St. Lawrence River Watershed Project (SLRWP) Inc. and the Franklin County Soil & Water Conservation District (FCSWCD) launched a watershed planning effort with funds from the New York State Department of State’s (NYSDOS) Local Waterfront Revitalization Program. This Watershed Characterization Report has been developed as a component of the St. Lawrence River Watershed Revitalization Plan (WRP), scheduled for completion in 2020.

The St. Lawrence River Watershed Revitalization Plan will address a series of questions:

1. Where are we now? That is, what is the current status of the natural, cultural, and political environment within the watershed? What are the assets, existing problems, and emerging threats and opportunities?
2. Where are we going? What processes and programs are in place that will affect the future of the watershed?
3. Where do we want to be? What is the community’s vision for the future of the watershed? What desirable conditions or attributes of the watershed should be enhanced, and what undesirable conditions should be minimized or eliminated?
4. How do we get there? What strategic actions will enable the community to achieve the goals and vision? What specific practices and projects will help restore and protect the watershed and how can funds be leveraged?
5. When will we get there? When will the recommended projects be advanced, and how will the priority actions be decided?
6. How do we measure progress? What is the plan for tracking improvement and deciding what else needs to be done?

This Watershed Characterization Report documents current conditions and trends in the watershed, providing data and information needed to address the first two questions above. Water quality is linked to conditions throughout the watershed, including its landscape (geography, soils, hydrology, habitat, and climate), land use (settlement patterns, impervious surfaces, industry and agriculture centers, and waste management practices), and conditions that alter the natural state of the land. This characterization of the environmental conditions and human activities that affect the St. Lawrence River watershed will provide a basis for recommending long-term protection and restoration strategies for the watershed.
2 Overview of the Watershed

A watershed is the land that drains, or sheds, its water to a single waterbody, such as a wetland, river, lake, coastal embayment, or ocean. The St. Lawrence River serves as the natural outlet for the Great Lakes to the Atlantic Ocean via the St. Lawrence River and Seaway, and it drains nearly 300,000 square miles from the Great Lakes Plains Region via Lake Ontario as well as the northern and western Adirondack Mountains. The river is part of the international boundary between the United States and Canada, and its shoreline abuts the Canadian provinces of Ontario and Quebec as well as northern New York.

The subject of this report is the portion of the St. Lawrence River watershed that lies within New York State. This watershed encompasses 5,600 square miles within the state’s borders and spans eight counties, including all of St. Lawrence County, most of Franklin County, much of northern Jefferson, Lewis, Herkimer, and Hamilton counties, and small areas of western Essex and Clinton Counties (Map 1). In addition to 185 miles of St. Lawrence River shoreline, New York’s St. Lawrence River watershed includes 12,030 miles of freshwater rivers and streams (Map 11).

Land cover in the basin is comprised of densely forested woodlands with large peatland complexes in the southern portion of the basin along the slopes of the Adirondack Mountains; and more flat, agricultural plains along the St. Lawrence at the northern side of the basin. Developed and industrial areas include Massena, Malone, Ogdensburg, Canton, and Gouverneur.

Much of the southern and eastern portions of the watershed lie within the Adirondack Park, designated by the blue dotted line in Map 1. The Adirondack Park Agency oversees this area to “insure optimum overall conservation, protection, preservation, development and use of the unique scenic, aesthetic, wildlife, recreational, open space, historic, ecological and natural resources of the Adirondack Park” (APA Act, 2018).

2.1 Evolution and Current Configuration of the Basin

Melting ice, glacial debris, and changing glacial topography contributed to the formation of the St. Lawrence River basin. A quarter of a million years ago, a glacier advanced southward into the Adirondack region, creeping over hills and scraping up soil and rock from the land. Ice dams formed in river valleys due to the glacial debris, dotting the landscape with hundreds of lakes and ponds as the glacier began to melt and recede. Taking the path of least resistance, northwestern Adirondack waters drained into the St. Lawrence River, which developed approximately 10,000 years ago as a result of the rebounding continent from the Last Glacial Maximum, the Wisconsin Glaciation. The Wisconsin ice reached a thickness of more than 2 miles at its maximum extent. The glacier scoured the land depositing various thicknesses of till, significantly modifying the surface hydrology, slope, and terrain.
Today, New York’s St. Lawrence River watershed extends from the northern and western slopes of the Adirondack Mountains at the southern end of the basin, to the plains along the St. Lawrence at the northern end of the basin. The river’s headwaters are as far west as the northeast edge of Lake Ontario (cutting southeast between Watertown and Fort Drum) and as far east as Clinton and Essex Counties.

2.2 Subwatersheds

Watersheds are subdivided into smaller units that collectively contribute groundwater and surface water to larger watersheds or subbasins. Hydrologic units are used to create a baseline drainage boundary framework to account for all land and surface areas. Water basins in the United States are divided into hydrologic units identified by a unique hydrologic unit code (HUC) consisting of four to eight digits based on four levels of classification: region (4-digit, or HUC4), subregion (8-digit, or HUC8), accounting unit (10-digit, or HUC10), and cataloging unit (12-digit, or HUC12).

The St. Lawrence River is comprised of nine HUC8 subwatersheds, 43 HUC10 subwatersheds, and 180 HUC12 subwatersheds. The US Geological Survey’s (USGS) 2016 Watershed Boundary Dataset (WBD) retired the Upper St. Lawrence subwatershed (04150301) and subdivided it into the Headwaters St. Lawrence (04150309) and Raisin River-St. Lawrence River (04150310) (Map 2). However, much of the data cited and presented here was collected prior to this update and will be referenced as the Upper St. Lawrence subbasin (04150301). HUC8 codes were used to characterize and assess the areas within the St. Lawrence River watershed to better address the various environments, limitations, and needs of its respective area. Figure 1 demonstrates the percent aerial make-up of the St. Lawrence River watershed by HUC8. Table 1 lists the HUC12s and their respective names, area, and percent make-up of the watershed for each HUC8 subregion. Maps 3 through 10 depict each HUC8 individually and their respective HUC12 watersheds.
Figure 1
HUC8 Areas, St. Lawrence River Watershed
Source: 2011 CDL-NLCD Hybrid Land Cover dataset.

Table 1
Hydrologic Units and Area within the St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Name HUC12 Watershed</th>
<th>Area (square miles)</th>
<th>% of HUC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>041503010101</td>
<td>French Creek</td>
<td>28.1</td>
<td>7.2</td>
</tr>
<tr>
<td>(04150301)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>041503010102</td>
<td></td>
<td>Wheeler Creek-Frontal Saint Lawrence River</td>
<td>35.9</td>
<td>9.2</td>
</tr>
<tr>
<td>041503010103</td>
<td></td>
<td>Mullet Creek</td>
<td>26.1</td>
<td>6.7</td>
</tr>
<tr>
<td>041503010104</td>
<td></td>
<td>Cranberry Creek-Frontal Saint Lawrence River</td>
<td>35.2</td>
<td>9.0</td>
</tr>
<tr>
<td>041503010105</td>
<td></td>
<td>Crooked Creek-Cranberry Creek-Frontal Saint</td>
<td>20.1</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lawrence River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>041503010106</td>
<td></td>
<td>Chippewa Creek</td>
<td>38.6</td>
<td>9.9</td>
</tr>
<tr>
<td>041503010107</td>
<td></td>
<td>City of Morristown-Frontal Saint Lawrence</td>
<td>31.1</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>River</td>
<td></td>
<td></td>
</tr>
<tr>
<td>041503010201</td>
<td></td>
<td>Tibbits Creek</td>
<td>17.7</td>
<td>4.5</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Name HUC12 Watershed</td>
<td>Area (square miles)</td>
<td>% of HUC8</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>041503010202</td>
<td>Whitehouse Bay-Frontal Saint Lawrence River</td>
<td>29.0</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>041503010203</td>
<td>Little Sucker Brook-Sucker Brook</td>
<td>46.2</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>041503010204</td>
<td>Brandy Brook</td>
<td>36.3</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>041503010205</td>
<td>Coles Creek-Frontal Saint Lawrence River</td>
<td>22.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>041503010301</td>
<td>Dodge Creek-Frontal Saint Lawrence River</td>
<td>23.2</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>041503010302</td>
<td>Raquette Creek-Frontal Saint Lawrence River</td>
<td>2.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503020101</td>
<td>Robinson River-Oswegatchie River</td>
<td>48.3</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>041503020102</td>
<td>Buck Brook-Oswegatchie River</td>
<td>26.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>041503020103</td>
<td>Cranberry Lake-Oswegatchie River</td>
<td>67.6</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>041503020201</td>
<td>Tamarack Creek</td>
<td>14.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020202</td>
<td>Upper Little River</td>
<td>31.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503020303</td>
<td>Lower Little River</td>
<td>27.5</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>041503020301</td>
<td>Sand Lake Outlet-Middle Branch Oswegatchie River</td>
<td>26.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>041503020203</td>
<td>Sand Lake Outlet-Middle Branch Oswegatchie River</td>
<td>26.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>041503020202</td>
<td>Upper Little River</td>
<td>31.9</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503020302</td>
<td>Wolf Creek-Middle Branch Oswegatchie River</td>
<td>48.7</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>041503020303</td>
<td>Fish Creek</td>
<td>17.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>041503020304</td>
<td>Browns Creek-Middle Branch Oswegatchie River</td>
<td>23.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>041503020401</td>
<td>Headwaters West Branch Oswegatchie River</td>
<td>25.8</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>041503020402</td>
<td>Blanchard Creek-West Branch Oswegatchie River</td>
<td>41.2</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>041503020501</td>
<td>Jenny Creek</td>
<td>17.2</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>041503020502</td>
<td>Big Creek</td>
<td>35.3</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>041503020503</td>
<td>Meadow Brook-West Branch Oswegatchie River</td>
<td>21.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>041503020504</td>
<td>West Branch Oswegatchie River</td>
<td>37.5</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>041503020601</td>
<td>Peavine Creek-Oswegatchie River</td>
<td>46.7</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>041503020602</td>
<td>Stammer Creek</td>
<td>21.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>041503020603</td>
<td>Welch Creek-Oswegatchie River</td>
<td>30.5</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>041503020604</td>
<td>Pork Creek-Oswegatchie River</td>
<td>16.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>041503020701</td>
<td>Sawyer Creek</td>
<td>31.5</td>
<td>3.0</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Name HUC12 Watershed</td>
<td>Area (square miles)</td>
<td>% of HUC8</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>041503020702</td>
<td>Hawkins Creek-Matoon Creek</td>
<td>32.3</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>041503020801</td>
<td>Turnpike Creek-Oswegatchie River</td>
<td>29.0</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>041503020802</td>
<td>Malterna Creek-Oswegatchie River</td>
<td>33.7</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>041503020803</td>
<td>Boland Creek</td>
<td>33.9</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>041503020804</td>
<td>Vrooman Creek-Oswegatchie River</td>
<td>45.0</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>041503020901</td>
<td>Anderson Creek-Oswegatchie River</td>
<td>31.1</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>041503020902</td>
<td>Indian Creek</td>
<td>38.6</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>041503020903</td>
<td>Beaver Creek</td>
<td>47.3</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>041503020904</td>
<td>Barter Creek-Oswegatchie River</td>
<td>29.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>041503021001</td>
<td>Town of Flackville-Lisbon Creek</td>
<td>23.9</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>041503021002</td>
<td>Village of Heuvelton-Oswegatchie River</td>
<td>17.9</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>041503021003</td>
<td>Oswegatchie River</td>
<td>30.8</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1050.1</td>
<td>18.8 (of HUC6)</td>
</tr>
<tr>
<td>Indian (04150303)</td>
<td>041503030101</td>
<td>Weatherhead Creek-Indian River</td>
<td>37.9</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>041503030102</td>
<td>Bonaparte Creek</td>
<td>23.0</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>041503030103</td>
<td>Blanchard Creek-Indian River</td>
<td>34.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>041503030201</td>
<td>Rockwell Creek-Indian River</td>
<td>51.3</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>041503030202</td>
<td>West Branch Black Creek</td>
<td>23.4</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>041503030203</td>
<td>Buck Creek-Black Creek</td>
<td>22.8</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>041503030204</td>
<td>Beaver Meadows Creek-Black Creek</td>
<td>16.1</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>041503030205</td>
<td>Hunter Creek-Indian River</td>
<td>21.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>041503030301</td>
<td>West Creek</td>
<td>31.8</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>041503030302</td>
<td>Otter Creek</td>
<td>24.4</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>041503030303</td>
<td>Trout Brook-Indian River</td>
<td>28.9</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>041503030401</td>
<td>Soapstone Creek-Indian River</td>
<td>19.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>041503030402</td>
<td>Muskellunge Lake-Indian River</td>
<td>23.9</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>041503030403</td>
<td>Bostwick Creek-Indian River</td>
<td>30.9</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>041503030501</td>
<td>Jewett Creek</td>
<td>19.1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>041503030502</td>
<td>Butterfield Lake-Black Creek</td>
<td>17.9</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>041503030503</td>
<td>Birch Creek</td>
<td>24.8</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>041503030504</td>
<td>Fish Creek</td>
<td>36.1</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>041503030505</td>
<td>Black Creek-Black Lake</td>
<td>74.9</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>562.5</td>
<td>10.1 (of HUC6)</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Name HUC12 Watershed</td>
<td>Area (square miles)</td>
<td>% of HUC8</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>---</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Grasse (04150304)</td>
<td>041503040101</td>
<td>Dead Creek</td>
<td>24.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>041503040102</td>
<td>Massawepie Lake-South Branch Grasse River</td>
<td>52.7</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>041503040201</td>
<td>Pleasant Lake Stream-Middle Branch Grasse River</td>
<td>31.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>041503040202</td>
<td>South Branch Grasse River</td>
<td>62.6</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>041503040203</td>
<td>North Branch Grasse River</td>
<td>61.2</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>041503040204</td>
<td>Deerskin Creek-Middle Branch Grasse River</td>
<td>40.3</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>041503040301</td>
<td>Grannis Brook</td>
<td>35.3</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>041503040302</td>
<td>Van Rensselaer Creek-Little River</td>
<td>46.7</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>041503040303</td>
<td>Tracy Brook-Little River</td>
<td>17.7</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>041503040401</td>
<td>Tanner Creek</td>
<td>38.1</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>041503040402</td>
<td>Elm Creek</td>
<td>41.1</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>041503040403</td>
<td>Plumb Brook-Grasse River</td>
<td>60.9</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>041503040404</td>
<td>Nettle Creek</td>
<td>16.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>041503040405</td>
<td>Line Creek</td>
<td>17.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>041503040406</td>
<td>Harrison Creek-Grasse River</td>
<td>29.1</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>041503040501</td>
<td>Town of Madrid-Grasse River</td>
<td>27.8</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>041503040502</td>
<td>McConnell Creek-Grasse River</td>
<td>29.2</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>633.0</td>
<td>11.3 (of HUC6)</td>
</tr>
<tr>
<td>Raquette (04150305)</td>
<td>041503050101</td>
<td>South Inlet</td>
<td>32.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>041503050102</td>
<td>Marion River</td>
<td>33.3</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>041503050103</td>
<td>Raquette Lake</td>
<td>61.8</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>041503050104</td>
<td>Moose Pond</td>
<td>26.5</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>041503050105</td>
<td>Forked Lake-Raquette River</td>
<td>37.6</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>041503050201</td>
<td>Upper Cold River</td>
<td>40.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>041503050202</td>
<td>Ermine Brook-Moose Creek</td>
<td>15.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>041503050203</td>
<td>Lower Cold River</td>
<td>30.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>041503050301</td>
<td>Salmon River</td>
<td>21.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>041503050302</td>
<td>Big Brook</td>
<td>40.4</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>041503050303</td>
<td>Raquette River-Long Lake</td>
<td>53.6</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>041503050401</td>
<td>Moose Creek</td>
<td>19.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>041503050402</td>
<td>Stony Creek</td>
<td>31.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>041503050403</td>
<td>Palmer Brook-Raquette River</td>
<td>17.6</td>
<td>1.4</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Name HUC12 Watershed</td>
<td>Area (square miles)</td>
<td>% of HUC8</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>041503050404</td>
<td>Follensby Pond-Raquette River</td>
<td>38.3</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>041503050405</td>
<td>Bog Stream</td>
<td>19.9</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>041503050406</td>
<td>Round Lake Stream</td>
<td>56.1</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>041503050407</td>
<td>Bog River</td>
<td>56.9</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>041503050408</td>
<td>Wolf Pond</td>
<td>20.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>041503050409</td>
<td>Jenkins Brook-Tupper Lake</td>
<td>58.5</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>041503050501</td>
<td>Dead Creek</td>
<td>22.1</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>041503050502</td>
<td>Mountain Brook-Raquette River</td>
<td>35.1</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>041503050503</td>
<td>Willis Brook-Jordan River</td>
<td>19.9</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>041503050504</td>
<td>Potter Brook-Jordan River</td>
<td>28.0</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>041503050505</td>
<td>Ellis Brook-Raquette River</td>
<td>33.8</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>041503050506</td>
<td>Joe Indian Inlet</td>
<td>21.3</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>041503050507</td>
<td>Cold Brook-Raquette River</td>
<td>33.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>041503050601</td>
<td>Cold Brook</td>
<td>20.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>041503050602</td>
<td>Dead Creek-Raquette River</td>
<td>37.3</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>041503050603</td>
<td>Parkhurst Brook</td>
<td>17.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>041503050604</td>
<td>Stafford Brook-Raquette River</td>
<td>47.1</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>041503050701</td>
<td>Upper Trout Brook</td>
<td>30.0</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>041503050702</td>
<td>Lower Trout Brook</td>
<td>36.8</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>041503050703</td>
<td>Village of Potsdam-Raquette River</td>
<td>34.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>041503050704</td>
<td>Plum Brook</td>
<td>43.3</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>041503050705</td>
<td>Squeak Brook</td>
<td>38.1</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>041503050706</td>
<td>Hutchins Creek-Raquette River</td>
<td>49.8</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1259.6</td>
<td>22.6 (of HUC6)</td>
</tr>
</tbody>
</table>

St. Regis (04150306)

<table>
<thead>
<tr>
<th>HUC12</th>
<th>Name HUC12 Watershed</th>
<th>Area (square miles)</th>
<th>% of HUC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>041503060101</td>
<td>Hays Brook</td>
<td>16.1</td>
<td>1.9</td>
</tr>
<tr>
<td>041503060102</td>
<td>Osgood River</td>
<td>28.2</td>
<td>3.3</td>
</tr>
<tr>
<td>041503060103</td>
<td>Pleasant Brook-East Branch Saint Regis River</td>
<td>55.7</td>
<td>6.5</td>
</tr>
<tr>
<td>041503060201</td>
<td>Windfall Brook-West Branch Saint Regis River</td>
<td>52.7</td>
<td>6.1</td>
</tr>
<tr>
<td>041503060202</td>
<td>Long Pond Outlet</td>
<td>42.7</td>
<td>5.0</td>
</tr>
<tr>
<td>041503060203</td>
<td>Black Brook-West Branch Saint Regis River</td>
<td>24.3</td>
<td>2.8</td>
</tr>
<tr>
<td>041503060204</td>
<td>Stony Brook</td>
<td>26.4</td>
<td>3.1</td>
</tr>
<tr>
<td>041503060205</td>
<td>Alder Meadow Brook-West Branch Saint Regis River</td>
<td>53.5</td>
<td>6.2</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Name HUC12 Watershed</td>
<td>Area (square miles)</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>041503060206</td>
<td>Dan Wright Brook-Trout Brook</td>
<td></td>
<td>43.9</td>
</tr>
<tr>
<td>041503060207</td>
<td>Tucker Brook-West Branch Saint Regis River</td>
<td></td>
<td>26.2</td>
</tr>
<tr>
<td>041503060301</td>
<td>Mile Brook-Deer River</td>
<td></td>
<td>37.1</td>
</tr>
<tr>
<td>041503060302</td>
<td>Trout Brook</td>
<td></td>
<td>37.3</td>
</tr>
<tr>
<td>041503060303</td>
<td>Kingston Brook-Deer River</td>
<td></td>
<td>58.3</td>
</tr>
<tr>
<td>041503060304</td>
<td>Lawrence Brook</td>
<td></td>
<td>35.2</td>
</tr>
<tr>
<td>041503060305</td>
<td>Redwater Brook-Deer River</td>
<td></td>
<td>29.0</td>
</tr>
<tr>
<td>041503060401</td>
<td>Headwaters Saint Regis River</td>
<td></td>
<td>35.0</td>
</tr>
<tr>
<td>041503060402</td>
<td>Quebec Brook-Saint Regis River</td>
<td></td>
<td>32.8</td>
</tr>
<tr>
<td>041503060403</td>
<td>Goose Pond Brook-Saint Regis River</td>
<td></td>
<td>55.1</td>
</tr>
<tr>
<td>041503060404</td>
<td>Lake Ozonia Outlet</td>
<td></td>
<td>29.0</td>
</tr>
<tr>
<td>041503060405</td>
<td>Long Pond-Saint Regis River</td>
<td></td>
<td>19.8</td>
</tr>
<tr>
<td>041503060406</td>
<td>Hopkinton Brook</td>
<td></td>
<td>20.5</td>
</tr>
<tr>
<td>041503060407</td>
<td>Miller Brook-Saint Regis River</td>
<td></td>
<td>38.1</td>
</tr>
<tr>
<td>041503060408</td>
<td>Bell Brook-Saint Regis River</td>
<td></td>
<td>30.6</td>
</tr>
<tr>
<td>041503060409</td>
<td>Town of Hogansburg-Saint Regis River</td>
<td></td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>863.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salmon (04150307)</th>
<th>HUC12</th>
<th>Name HUC12 Watershed</th>
<th>Area (square miles)</th>
<th>% of HUC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>041503070101</td>
<td>Hatch Brook</td>
<td></td>
<td>39.9</td>
<td>9.8</td>
</tr>
<tr>
<td>041503070102</td>
<td>Ingraham Stream-Salmon River</td>
<td></td>
<td>62.4</td>
<td>15.4</td>
</tr>
<tr>
<td>041503070103</td>
<td>Duane Stream</td>
<td></td>
<td>21.9</td>
<td>5.4</td>
</tr>
<tr>
<td>041503070104</td>
<td>Winslow Brook-Salmon River</td>
<td></td>
<td>36.2</td>
<td>8.9</td>
</tr>
<tr>
<td>041503070201</td>
<td>Headwaters Little Salmon River</td>
<td></td>
<td>15.4</td>
<td>3.8</td>
</tr>
<tr>
<td>041503070202</td>
<td>East Branch Little Salmon River</td>
<td></td>
<td>16.6</td>
<td>4.1</td>
</tr>
<tr>
<td>041503070203</td>
<td>Develin Brook-Little Salmon River</td>
<td></td>
<td>24.1</td>
<td>5.9</td>
</tr>
<tr>
<td>041503070204</td>
<td>Farrington Brook</td>
<td></td>
<td>24.0</td>
<td>5.9</td>
</tr>
<tr>
<td>041503070205</td>
<td>Town of Bombay-Little Salmon River</td>
<td></td>
<td>20.2</td>
<td>5.0</td>
</tr>
<tr>
<td>041503070301</td>
<td>Branch Brook</td>
<td></td>
<td>19.1</td>
<td>4.7</td>
</tr>
<tr>
<td>041503070302</td>
<td>Plum Brook-Salmon River</td>
<td></td>
<td>30.3</td>
<td>7.5</td>
</tr>
<tr>
<td>041503070303</td>
<td>East Branch Deer Creek</td>
<td></td>
<td>24.7</td>
<td>6.1</td>
</tr>
<tr>
<td>041503070304</td>
<td>West Branch Deer Creek</td>
<td></td>
<td>33.4</td>
<td>8.2</td>
</tr>
<tr>
<td>041503070305</td>
<td>Pike Creek</td>
<td></td>
<td>28.0</td>
<td>6.9</td>
</tr>
<tr>
<td>041503070306</td>
<td>Town of Fort Covington-Salmon River</td>
<td></td>
<td>9.4</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>405.6</td>
<td>7.3 (of HUC6)</td>
</tr>
</tbody>
</table>
Table: St. Lawrence River Watershed Characterization

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Name HUC12 Watershed</th>
<th>Area (square miles)</th>
<th>% of HUC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chateaugay-English (04150308)</td>
<td>041503080101</td>
<td>Middle Kiln Brook</td>
<td>30.1</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>041503080102</td>
<td>Separator Brook</td>
<td>15.0</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>041503080103</td>
<td>Mountain Pond Stream-Upper Chateaugay Lake</td>
<td>36.1</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>041503080104</td>
<td>Bailey Brook-Chateaugay River</td>
<td>37.2</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>041503080201</td>
<td>Marble River</td>
<td>33.3</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>041503080202</td>
<td>Hinchinbrook Brook</td>
<td>19.9</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>041503080203</td>
<td>Collins Brook</td>
<td>8.3</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>041503080204</td>
<td>Allen Brook-Chateaugay River</td>
<td>15.4</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>041503080205</td>
<td>Beaver Pond Brook-Chateaugay River</td>
<td>19.2</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>041503080301</td>
<td>Collins Brook-Trout River</td>
<td>57.6</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>041503080302</td>
<td>Little Trout River</td>
<td>40.0</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td>041503080303</td>
<td>Briggs Creek</td>
<td>14.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>041503080304</td>
<td>Town of Trout River-Trout River</td>
<td>8.9</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>041503080401</td>
<td>Crystal Creek</td>
<td>14.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>041503080402</td>
<td>Taylor Brook-English River</td>
<td>26.8</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>041503080403</td>
<td>Allen Brook</td>
<td>5.5</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>041503080404</td>
<td>Kellas Creek-English River</td>
<td>9.9</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>041503080406</td>
<td>Ruisseau Norton</td>
<td>2.7</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>041503080501</td>
<td>Ruisseau Noir</td>
<td>11.2</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>041503080502</td>
<td>Riviere aux Outardes Est</td>
<td>3.2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>041503080503</td>
<td>Riviere aux Outardes</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

| 411.6 | 7.4 (of HUC6) |
| 5577.7 |

SOURCE: 2011 CDL-NLCD Hybrid Land Cover dataset.

2.3 Settlement and Development in the Watershed

The St. Lawrence River basin is home to the Mohawks of the Iroquois Confederation, who call the river *Kaniatarowanennneh*, meaning “big waterway.” Original Mohawk territory extended from Schoharie Creek upriver to east Canada Creek. Today, the St. Regis Mohawk Reservation at Akwesasne covers 14,000 acres in Franklin and St. Lawrence Counties at the confluence the St. Regis, Raquette, Grasse, and St. Lawrence Rivers. The St. Regis Mohawk Nation is the only Mohawk community officially recognized by the United States.
Settlers of European descent began to flock to upstate New York after the War of 1812, drawn by the “curative” properties of sulfur mineral springs located on the Raquette River, which became the basis of the local economy. During the late 19th century, the Irish and French Canadians built settlements southeast of Massena and along the Franklin and St. Lawrence County border, respectively. Wealth in this region was primarily derived from mining, farming, and logging. Lead, iron, tremolite, zinc, feldspar, talc, and marble were mined from the land, leaving disturbed ground cover, open pits, and ruins. Today, marble, zinc, and tremolite mining is still integral to the towns of Fowler, Pierrepont, and Ogdensburg.

In 1902, the Massena Power Canal was constructed, allowing for an abundant hydroelectric energy supply in the area, which in turn brought more industry to the region (e.g., Pittsburgh Reduction Company, an aluminum producer). In the late 1950s, FDR’s Power Project brought additional low-cost electricity to the area followed by new industries in Massena, such as Reynolds Metals Company and General Motors.

The St. Lawrence Seaway opened in April 1959, allowing transatlantic trade and access for ocean vessels and lake boaters to the Great Lakes. The Seaway System has been integral not only to local economies but to the US economy as a whole, generating more than $4.3 billion in personal income, $3.4 billion in transportation-related business revenue, and $1.3 billion in federal, state, and local taxes (IJC 2014). In addition to commercial goods, dominant commodities shipped along the St. Lawrence Seaway include iron ore for the steel industry, coal for power generation, and limestone for construction and steel industries.

The waters of the St. Lawrence River watershed have various designated use dependent on their water quality. Some waters are used as a source of drinking water, while others are primarily for recreation and aquatic life. The watershed’s mix of abundant surface water, rugged peaks, rolling hills, expansive wetlands, and flat plains makes it a major destination for scenic viewing, hiking, fishing, kayaking, boating, snowmobiling and other recreational pursuits. Fifty percent of lakes have been identified as having poor water quality (NYSDEC 2016a). This is in part due to atmospheric deposition of pollutants (acid and mercury) originating outside the basin. In addition, the growth of agriculture and industry in the region since the 19th century has also had a lasting adverse impact on water quality in the watershed. In the late 1900s and early 2000s, Superfund sites were established at Grasse River in Massena, NY (Alcoa, Inc.), the St. Lawrence River in Massena, NY (General Motors), and at Sealand Restoration, Inc. (disposal facility) in Lisbon, NY, where industrial activity had contaminated sediments and groundwater with polychlorinated biphenyls (PCBs), volatile organic carbons (VOCs), and polycyclic aromatic hydrocarbons (PAHs).

Today, citizens of the St. Lawrence River watershed are proactively working toward reducing pollution to protect and restore valuable water resources. Taking action to improve and protect
water quality will allow communities and economies to thrive and enjoy a sustainable future for years to come.

2.4 Existing Plans and Initiatives Related to Water Resources in the Study Area

Appendix A provides an overview of the institutional framework for local laws, programs, and practices affecting water quality in the watershed, as well as an assessment of the ability of local laws and programs to implement best management practices that would protect water quality.

Several federal and state regulatory and advisory programs are already in place to advance watershed planning within the St. Lawrence River watershed. Examples include:

- **Great Lakes Focus**
 - Lake Ontario Lake-wide Action and Management Plan (2018-2022)
 - Great Lakes St. Lawrence Seaway Study (2007)
 - New York’s Great Lakes Basin: Interim Action Agenda (Ongoing effort)

- **NY Statewide Plans of Interest**
 - St. Lawrence River Basin Waterbody Inventory and Priority Waterbodies List (2014)
 - New York State Riparian Opportunity Assessment (January 2018)
 - New York State Invasive Species Comprehensive Management Plan (Nov 2018)
 - New York State Wildlife Action Plan (September 2015)

- **IJC Climate-Related Plans and Guidance**
 - Lake Ontario – St. Lawrence River Plan (2014)

- **Akwesasne Climate Change Adaptation Plan (2013)**

- **Subwatershed Research**
 - Watershed Protection of the St. Lawrence – Raquette River Watershed with Special Consideration to Large Wetlands and Large Landownership; Part One: The St. Regis River Basin
 - St. Regis Chain Limnology and Water Quality Report (2017)
 - Blue Mountain Lake Watershed Monitoring Program (2016)
 - Salmon River Watershed Management Plan, Phase I (2016)
 - Canton Grasse River Waterfront Revitalization Plan (March 2018)

- **Local Waterfront Revitalization Plans**
 - Town and Village of Alexandria Bay (Draft, 2019)
 - Village of Cape Vincent (1988)
 - Town and Village of Clayton (July 2013)
 - Town and Village of Malone (2012)
Town and Village of Morristown (1991)
City of Ogdensburg (1987)
Town and Village of Waddington (1991)

- Adirondack Forest Preserve Unit Management Plans
 - St. Lawrence Foothills (2015)
 - Cranberry Lake Wild Forest (1984)
 - Debar Mountain Wild Forest (2017)

The monitoring programs and watershed management plans provide key data and insights to inform the analysis of water quality and the environmental setting. The local watershed management plans, although specific to their locality, also address similar critical issues facing the St. Lawrence River watershed.

In 2019, Governor Andrew Cuomo announced the formation of the Lake Ontario Resiliency and Economic Development Initiative (REDI) commission. This multiagency task force is charged with developing a plan to harden infrastructure in flood prone regions along Lake Ontario’s waterfront while strengthening the region’s local economies, which are heavily dependent on summer tourism. The REDI encompassed eight counties along Lake Ontario and the St. Lawrence River including Jefferson and St. Lawrence counties. These counties encompass most of the land area within the St. Lawrence watershed. While each region has a unique strategic plan and set of goals, there are common themes that relate directly to the priorities and approach of the watershed planning process applied here:

- commitment to a regional approach to identifying challenges and finding solutions;
- recognition of the need to invest in infrastructure;
- an embrace of smart growth concepts;
- reclamation of waterfront assets for community and economic development;
- recognition of the need to strengthen the effectiveness of government and civic institutions in order to improve the quality of life for all.
3 Environmental Setting

3.1 Water Resources

Water resources within the St. Lawrence River watershed support its multiple human uses, which include recreation, shipping, transportation, infrastructure, tourism, agriculture, and hydroelectric power generation.

3.1.1 Surface Water

Nineteen percent (19%) of the area in New York’s St. Lawrence River watershed is surface water (Map 11). In addition to 185 miles of St. Lawrence River shoreline, this includes 12,030 miles of freshwater rivers and streams. Major tributaries include the Oswegatchie River (3,590 miles), Raquette River (2,016 miles), St. Regis River (1,734), Grasse River (1,607 miles), and Indian River (1,222 miles), which drain the northwestern Adirondack Mountains and together comprise 89% of total stream and river miles in the watershed. There are 376 significant freshwater lakes, ponds, and reservoirs covering 104,125 acres, the largest being Black Lake (7,754 acres), Cranberry Lake (6,795 acres), Raquette Lake (5,194 acres), Tupper Lake (4,858 acres), and Long Lake (4,094 acres), which together account for 33% of lake acres in the watershed.

Many of the streams originate as cold headwaters in the hills of the northern Adirondack region (Oswegatchie and Raquette Rivers) and flow to the St. Lawrence River across broad flat plains of lacustrine sands, clays, and peat deposits. Waterfalls and rapids are typical features of the major tributaries as these rivers pass through the mountains along steep gradients. In many places, the natural energy of this process is harnessed by hydroelectric dams.

Fifty percent of lakes in the watershed have been identified as having poor water quality (NYSDEC 2016a), with 18% being good or satisfactory, and 32% without sufficient data for assessment (NYSDEC 2018). Sixty percent (60%) of the rivers in the watershed remain largely unassessed; of those rivers that have been assessed, 36% are classified as having good or satisfactory water quality and 5% are considered to have poor water quality. Details about existing water quality conditions are presented in section 5.

3.1.2 Wetlands

Wetlands, delineated in Map 12, comprise approximately 14% of the watershed area with the St. Regis (84,000 acres) and Oswegatchie (81,000 acres) subbasins including the highest concentration of wetland area. Wetlands are sensitive, productive ecosystems that serve several ecosystem functions including flood storage and shoreline erosion protection. Hydrology varies seasonally and episodically in wetlands due to periodic inundation and saturation of soils. NYSDEC identifies and regulates all freshwater wetlands greater than 12.4 acres in size. The St. Regis (84,000 acres, 15%), Oswegatchie (81,000 acres, 12%), and Raquette (71,000 acres, 9%) have the most wetland area.
Wetlands are threatened by encroachment for residential use, eutrophication, and alterations in hydrology that can convert them to uplands.

3.1.3 Precipitation Patterns and Flooding

The St. Lawrence River watershed is home to long, frigid winters and short, relatively cool summers. The average annual precipitation ranges from 35 to 62 inches per year (National Climatic Data Center, data from 1981-2010, in Arguez et al. 2010) (Map 13), largely dependent on elevation (Map 14). This rate is among the highest annual precipitation rates in New York State. The most precipitation occurs at the southeastern edges of the Raquette subbasin and southern edge of the Oswegatchie subbasin, with the lowest precipitation rates concentrated on areas adjacent to the St. Lawrence River. At the subwatershed level, the mean annual precipitation varies from a low of 37.6 inches in the Upper St. Lawrence to 43.9 inches in the Raquette (US EPA, Average Annual Precipitation 1981–2010). The National Oceanic and Atmospheric Administration (NOAA) operates seven climate monitoring stations throughout the watershed to continuously measure temperature and precipitation. Annual and seasonal normals collected by these stations are listed in Table 2. The watershed has a fairly consistent distribution of precipitation throughout the year, although most areas experience slightly higher precipitation rates (approximately 3.5–4.5 inches/month) in autumn and lower rates in the winter (approximately 2–3 inches/month) according to NOAA climatic data collected from 1981–2010 (Arguez et al. 2010). Snowfall averages increase with elevation; highlands see upward of 100 inches of snowfall annually. It is typical to still have snowpack in the Adirondacks in mid-March. The additional snowpack can be rapidly melted by warm spring rains, contributing to the potential for flooding and episodes of significant runoff.

Table 2
Climate Data, 2010

<table>
<thead>
<tr>
<th>Climate Monitoring Station</th>
<th>Elevation</th>
<th>Winter</th>
<th>Summer</th>
<th>Annual Average</th>
<th>Annual Average Snowfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wanakena Ranger School</td>
<td>460.2</td>
<td>19.8</td>
<td>66</td>
<td>44.18</td>
<td>114.2</td>
</tr>
<tr>
<td>Malone, NY</td>
<td>268.2</td>
<td>17.2</td>
<td>65.4</td>
<td>38.86</td>
<td>95.3</td>
</tr>
<tr>
<td>Canton 4SE, NY</td>
<td>136.6</td>
<td>19.4</td>
<td>66.6</td>
<td>37.34</td>
<td>79.6</td>
</tr>
<tr>
<td>Colton 2 N, NY</td>
<td>176.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gouveur 3 NW, NY</td>
<td>128</td>
<td>18.2</td>
<td>65.6</td>
<td>37.61</td>
<td>85.2</td>
</tr>
<tr>
<td>Tupper Lake Sunmount, NY</td>
<td>512.1</td>
<td>17.1</td>
<td>63.2</td>
<td>44.82</td>
<td></td>
</tr>
<tr>
<td>Massena International Airport, NY</td>
<td>65.2</td>
<td>18.1</td>
<td>66.6</td>
<td>34.96</td>
<td>69.4</td>
</tr>
</tbody>
</table>

SOURCE: Annual/Seasonal Normals, 2010, NOAA Climatic Data
Flooding in the St. Lawrence River watershed is a significant issue, especially in recent years, due to ongoing above average precipitation and snow melt in the Great Lakes Basin. Flooding occurs when heavy or continuous rainfall exceeds the soil’s absorptive capacity and flow capacity of local rivers and streams. Thirty-nine percent of the watershed’s area is comprised of wet areas with high runoff potential contiguous to surface water, also known as the hydrologically connected zone (HCZ). Major flooding has occurred in the years 2018 and 2019, resulting in millions of dollars’ worth of damages. Ongoing efforts through programs such as the Lake Ontario Resiliency and Economic Development Initiative aim to help communities adapt to this new normal of flooding in the area through hardening key infrastructure and smart growth principles.

Floodplains are typically found in low areas adjacent to streams, rivers, and lakes that are prone to periodic flooding. In undeveloped areas, floodplains provide diverse habitat and an opportunity for groundwater recharge. Flood Insurance Rate Maps were sourced from the Federal Emergency Management Agency (FEMA) to determine the locations of floodplains within the watershed (Map 15). However, much of the floodplain data is lacking and therefore an analysis at the watershed and subwatershed levels was not feasible. Therefore, other factors such as slope, soil type, drainage area and other water hydrology characteristics must be used to determine areas at risk of flooding.

3.2 Topography and Geology

In general, the topography can be surveyed as mountainous terrain in the southwestern area with lowland, agricultural plains lying inland from the St. Lawrence River within the eastern and northern region of the watershed. Defining ridgelines of the western Adirondack mountains have the highest elevation, exceeding 4,000 ft above mean sea level, with the highest elevations found along the southwestern edge and southern edge of the Raquette and Oswegatchie subbasins (Map 14).

The surficial material throughout the basin was deposited during the Last Glacial Maximum, approximately 26,500 years ago. Map 16 maps the surficial material of the St. Lawrence River watershed. Till and kame deposits in the Adirondack region is sand-rich and of metamorphic origin. It has poorly sorted, variable texture, from boulders to silt with permeability varying with thickness and compaction of the material due to deposition from a melting ice sheet. The Upper St. Lawrence, Indian, and western portion of the Oswegatchie subbasin are dominated by lacustrine silt and clay deposits that are generally calcareous. This material has low permeability and potential for land instability. The northern central and western areas of the watershed primarily consist of till, marine and lacustrine silt and clay, and sand which are typical of near-shore deposits in brackish water resulting in intermediate permeability.

Map 17 shows the bedrock geology of the St. Lawrence River watershed which predominantly consists of carbonate, sandstone, crystalline and metamorphosed rocks. A large band of carbonates extends from the west to east along the St. Lawrence River shoreline adjacent to a thinner band of
sandstone. The plains of the Upper St. Lawrence, Indian, and Oswegatchie subbasins are a conglomerate of glacial/alluvial deposits, carbonates, crystalline and sandstone. Crystalline rocks are the most dominant bedrock within the Adirondack region with some glacial deposits, metamorphosed clastic and crystalline, and shale and carbonate bedrock spreading throughout the range.

3.3 Soils

Soils are involved in many critical functions affecting the environment and water quality; they provide habitat to plants, animals, fungi, and microbes that contribute to nutrient and carbon cycling, filter water before it enters an aquifer, and moderate the supply of essential nutrients for agricultural production. Soils differ from place to place based on parent material, climate, organisms present, topography, and age. By characterizing soils based on their chemical, physical, and biological properties, we can predict the fate and transport of contaminants and a soils’ erosion potential, which both affect the quality of our waters.

The Natural Resource Conservation Service (NRCS) classifies soils into four hydrologic soil groups (A, B, C, D) based on the soil’s runoff potential. Runoff potential generally increases from Group A to D. A’s are typically sand, loamy sand, or sandy loam soils with high infiltration rates. B’s are usually silt loam or loam soils with a moderate infiltration rate when thoroughly wetted with a fine to moderately coarse texture. Sandy clay loams are representative of C soils, having a low infiltration rate and a moderately fine to fine structure. D soils are typically clay loam, silty clay loam, sandy clay, silty clay, or clay having a high runoff potential and very low infiltration rates due to its high swelling potential. The hydrologic soil groups throughout the basin are shown in Map 18. The western areas of the watershed along the St. Lawrence River, including the Upper St. Lawrence, Indian, and Oswegatchie subbasins, are dominated by class C and D soils classifying them as soils with high runoff potentials and low infiltration rates. These soils pose a greater risk concerning flooding potential. Other C and D soils lie along the St. Lawrence River across the northern portions of the Raisin, Raquette, St. Regis, and Salmon River subbasins. The mountainous regions within the mid-southern area of the watershed is varied in hydrologic soil composition likely due to its rapidly changing topography and abundant water resources in the area.

The potential for soil erosion by runoff and raindrop impact is measured by the soil erodibility k-factor. The NRCS developed this factor to estimate soil losses based on a soil’s physical and chemical characteristics, with the value ranging from 0.02-0.69. A higher k-value represents greater susceptibility of the soil to rill and sheet erosion by rainfall. Typically, soils with greater permeability have a greater resistance to erosion and, therefore, a lower k-value. The erosion potential for the St. Lawrence River watershed is shown in Map 19, with erosion potential increasing as colors darken to deeper red. The watershed has an average k-factor of 0.29 with the highest average k-factor of the subbasins being in the Upper St. Lawrence. However, areas with the highest k-factor locally lie within
the mountainous areas of the Adirondack State Park that contain steep slopes and high annual precipitation.

3.4 Habitat

The St. Lawrence River watershed is within the most un-populated, rural areas of New York State. Its diverse vegetation and waterbodies within the St. Lawrence River watershed provide habitat to various terrestrial and aquatic species. The landcover map, **Map 20**, illustrates the diversity of habitats throughout the watershed. A wide range of terrestrial habitats such as forests in the Adirondack region, wetlands, and agricultural lands serve as refuge for important bird, reptile, amphibian and mammal populations. These regional differences have been characterized into distinct ecological zones. Each zone, mapped in **Map 21**, represents an assemblage of interacting plant and animal populations that share a common environment. A description of the major zones present is given below.

Central Adirondacks. Most of this zone is within the southern half of the Raquette River subwatershed. It is characterized by boreal heath barrens, or shrubland that occurs at the outwash plains of the Adirondacks. Soils are sandy, dry, and poor in nutrients and may become seasonally flooded due to a discontinuous subsurface layer of podzolized soil that impairs water drainage. The area is characterized by various coniferous communities at higher elevations and mixed forests at lower elevations. A large proportion of this area is under public ownership, the Adirondack Park Agency, and is NYSDEC Forest Preserve.

Champlain Transition. This zone is confined to the Chateaugay-English subbasin at its eastern end along the St. Lawrence River within Clinton County. It is characterized by a mix of perched bogs of acidic, shallow peat, heath shrubland with well-drained, sandy soils, and open canopy woodlands with very shallow acidic soils over sandstone bedrock. Jack and pitch pines are dominant tree species in this zone.

Eastern Ontario Plains. This zone extends from the southwestern portions of the Upper St. Lawrence and Indian subwatersheds approximately to the St. Lawrence County line. This area consists of low elevation plains over limestone bedrock. It contains wetlands, grass- and shrublands which now has largely been transitioned for agricultural use as pastures for the dairy industry. This area supports alvar communities, a globally rare group found among the characteristic limestone bedrock. Soils of typically very shallow loams over limestone or dolostone bedrock.

St. Lawrence Plains. The Upper St. Lawrence, Oswegatchie, and northern tips of the Raquette, St. Regis, and Salmon River subwatersheds fall within the St. Lawrence Plains ecozone. This area is characterized by riverside meadows with gently sloping cobble shores, sparse or patchy vegetation dominated by scrub oak or heath shrubs, and small wetland areas rich in organic matter or clay. Water levels and soil saturation fluctuate seasonally and ice from the St. Lawrence River scours the
meadow, cutting back woody plants along its shoreline. The area has a cool microclimate. The forested areas are dominated by pitch pine, chestnut and red oak, red maple, American elm, and green and white ash. Grazing and other agricultural practices have altered the ecological zone.

Western Adirondack Foothills. The Western Adirondack Foothills is the dominant ecological zone of the St. Lawrence River watershed. The band extends from the southwestern edge of the Oswegatchie and diagonally stretches to the southern half of the Chateaugay-English subwatershed, traversing the bulk of the Grasse, the narrow, middle stretch of the Raquette, the southern half of the St. Regis, and the central Salmon River subwatersheds. Sandy, low fertility soils derived from glacial outwash deposits lie on the foothills. The area contains many seasonally fluctuating, groundwater-fed ponds and associated wetlands that typically occur in pine barrens. Peatlands and bogs occur along the gentle slopes of the foothills. The landscape is covered with extensive hardwood forests and supports similar communities to those contained within the higher elevations of the Adirondacks.

The St. Lawrence River is home to a wide variety of warm water fish species including small- and largemouth bass, northern pike, walleye, yellow perch, bullheads and various panfish. Streams, rivers, and lakes of the Adirondack region host both warm- and cold-water fisheries providing diverse habitats from deep, clear waters to rushing rapids and swirling pools. Species such as Lake, Brown, Brook, and Rainbow Trout, large- and smallmouth bass, land-locked salmon, walleye, perch, northern pike, and chain pickerel can be found in these waters.

The New York Natural Heritage Program (NYNHP) aims to facilitate conservation and biodiversity by providing information and expertise on rare species and natural ecosystems within NYS. The Upper St. Lawrence has the highest total count of at-risk species at 53, followed by the Raquette River at 48. The majority of these counts are characterized as flowering plant species within these counts are characterized as flowering plant species with the second highest at-risk group being birds. A full list of rare, threatened, and endangered species of the St. Lawrence River watershed can be found at New York Nature Explorer (NYSDEC 2014).

Habitat quality is directly related to landscape condition and use, as well as hydrologic and biogeochemical processes. A habitat condition index was developed by the National Fish Habitat Partnership (NFHP, 2015 National Assessment) to score habitats on their likelihood of aquatic habitat degradation with a score range of 1 for high likelihood of aquatic habitat degradation, to 5 for low likelihood of aquatic habitat degradation. This score is dependent on land use, population density, roads, dams, mines, and point-source pollution sites. The habitat condition index for the entire watershed was calculated as 4.4, inferring that there is a low likelihood of aquatic habitat degradation.
3.5 Land Cover and Land Use

Both land cover and land use can impact water quality in a watershed. Land cover refers to how much of a region is covered by forests, wetlands, agriculture, open water, and other natural features. Land use refers to how the landscape is utilized by humans, such as for farming, conservation, residential, or commercial purposes. Land cover can function as a buffer against environmental impacts; for example, wetlands provide a buffer against flooding, woodlands buffer waterbodies from runoff, and vegetation can stabilize steep slopes prone to erosion. Land use information helps determine which types of pollutants may be present and how much could potentially be released.

Land cover within the S. Lawrence River watershed (Map 20, Table 3) is dominated by forested woodlands, encompassing roughly 59% of the total area. The Raquette River subbasin has the most acreage dedicated to forests at 619,000 acres, making up 77% of its total area. The region lost about 14,000 acres of its forests from 2001 to 2011 while areas classified as wetlands increased by 350 acres during this period. Agriculture occupies about 17% (616,000 acres) of the watersheds’ landscape with the remainder in wetlands (14%), open water (3%), urban development (3%), shrub/scrub (2%), and grasslands (1%).
The riparian zone of a landscape influences the water quality within, and downstream from, surrounding waterbodies. Identifying riparian zones in need of improvement and maintenance will enhance retainment of excess nutrients and sediments and perform other critical hydrologic, geomorphic, and biological functions that improve a watershed’s health.

Agriculture is a leading industry and use of land in the area, as the northern skirt of the St. Lawrence River water basin is host to rich soils and flat plains suitable for farming (Maps 14 and 18). Agricultural districts are outlined in Map 22. According to the 2017 Census of Agriculture from the USDA National Agricultural Statistics Service (NASS), land dedicated to farming has decreased by approximately 7% since 2012 within the watershed. In 2017, 620,714 acres were dedicated to farming, hosting 2,344 farms, a decrease of 144 farms since the 2012 census. In 2017, cropland, pasture/graing land, and woodlands occupied 333,350, 14,523, and 163,308 acres, respectively. Approximately 18,000 acres of cropland were idle or used for cover crops or soil-improvement but not harvested and not pastured or grazed. No-till practices are used on 191 farms occupying 21,377

Table 3
Land Cover, St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>HUC10</th>
<th>Forest (acres)</th>
<th>Scrubland (acres)</th>
<th>Grassland (acres)</th>
<th>Wetlands (acres)</th>
<th>Urban (acres)</th>
<th>Agriculture (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>89166</td>
<td>7145</td>
<td>4758</td>
<td>37537</td>
<td>18116</td>
<td>86806</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>446827</td>
<td>10064</td>
<td>4245</td>
<td>81473</td>
<td>12560</td>
<td>93025</td>
</tr>
<tr>
<td>Indian</td>
<td>177609</td>
<td>11313</td>
<td>7714</td>
<td>53231</td>
<td>15768</td>
<td>77481</td>
</tr>
<tr>
<td>Grasse</td>
<td>260231</td>
<td>6824</td>
<td>2590</td>
<td>48455</td>
<td>12460</td>
<td>65046</td>
</tr>
<tr>
<td>Raquette</td>
<td>619203</td>
<td>17890</td>
<td>3712</td>
<td>70860</td>
<td>13269</td>
<td>27824</td>
</tr>
<tr>
<td>St. Regis</td>
<td>389709</td>
<td>16222</td>
<td>3104</td>
<td>83969</td>
<td>7628</td>
<td>34845</td>
</tr>
<tr>
<td>Salmon</td>
<td>145666</td>
<td>4884</td>
<td>2194</td>
<td>35512</td>
<td>8212</td>
<td>59140</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>140762</td>
<td>7355</td>
<td>2443</td>
<td>52096</td>
<td>5158</td>
<td>51759</td>
</tr>
<tr>
<td>Watershed</td>
<td>2108346</td>
<td>84789</td>
<td>36167</td>
<td>496538</td>
<td>110193</td>
<td>616731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUC10</th>
<th>% Forest</th>
<th>% Scrubland</th>
<th>% Grassland</th>
<th>% Wetlands</th>
<th>% Urban</th>
<th>% Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>36</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>66</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Indian</td>
<td>49</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Grasse</td>
<td>64</td>
<td>2</td>
<td>1</td>
<td>12</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Raquette</td>
<td>77</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>St. Regis</td>
<td>71</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Salmon</td>
<td>56</td>
<td>2</td>
<td>1</td>
<td>14</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>53</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Watershed</td>
<td>59</td>
<td>2</td>
<td>1</td>
<td>14</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

SOURCE: 2011 CDL-NLCD Hybrid Land Cover dataset.
acres (up from 173 farms holding 13,032 acres in 2012), and reduced tillage is practiced on 182 farms covering 33,508 acres (up from the 92 farms covering 15,543 acres). Manure is spread across 104,000 acres in the watershed, and 129,000 acres are treated with commercial fertilizers, lime, or soil conditioners. Table 4 lists the harvested crops and livestock and poultry headcounts for the watershed. Agriculture census data can also be found for each county within the watershed.

Table 4
Crops and Livestock, St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>Selected Crop</th>
<th>Farms</th>
<th>Acres</th>
<th>% Harvested Cropland</th>
<th>Change in # of Farms since 2012</th>
<th>Change in Farmed Acres since 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>398</td>
<td>74178</td>
<td>26.49</td>
<td>-54</td>
<td>-2615</td>
</tr>
<tr>
<td>Soybeans</td>
<td>62</td>
<td>8284</td>
<td>2.96</td>
<td>-11</td>
<td>1054</td>
</tr>
<tr>
<td>Small grains (wheat, oats, barley, rye)</td>
<td>117</td>
<td>4109</td>
<td>1.47</td>
<td>-10</td>
<td>625</td>
</tr>
<tr>
<td>Vegetables</td>
<td>170</td>
<td>1128</td>
<td>0.40</td>
<td>-33</td>
<td>-473</td>
</tr>
<tr>
<td>Orchards</td>
<td>91</td>
<td>296</td>
<td>0.11</td>
<td>-18</td>
<td>-265</td>
</tr>
<tr>
<td>Nursery, greenhouse, floriculture, and sod</td>
<td>71</td>
<td>77</td>
<td>0.03</td>
<td>-18</td>
<td>-68</td>
</tr>
<tr>
<td>All other crops</td>
<td>1710</td>
<td>191949</td>
<td>68.55</td>
<td>-93</td>
<td>-11897</td>
</tr>
<tr>
<td>Total</td>
<td>2619</td>
<td>280021</td>
<td>100</td>
<td>-237</td>
<td>-13639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Livestock/Poultry</th>
<th>Farms (2017)</th>
<th>Acres (2017)</th>
<th>% of Livestock Acres</th>
<th>Change in Farms since 2012</th>
<th>Change in Farmed Acres since 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and calves</td>
<td>1173</td>
<td>135567</td>
<td>55.64</td>
<td>-142</td>
<td>-1137</td>
</tr>
<tr>
<td>Hogs and pigs</td>
<td>148</td>
<td>1045</td>
<td>0.43</td>
<td>-42</td>
<td>-964</td>
</tr>
<tr>
<td>Sheep and lambs</td>
<td>120</td>
<td>3369</td>
<td>1.38</td>
<td>5</td>
<td>-1685</td>
</tr>
<tr>
<td>Horses and ponies</td>
<td>622</td>
<td>3753</td>
<td>1.54</td>
<td>-43</td>
<td>-728</td>
</tr>
<tr>
<td>Goats</td>
<td>125</td>
<td>1153</td>
<td>0.47</td>
<td>-12</td>
<td>151</td>
</tr>
<tr>
<td>Chickens</td>
<td>441</td>
<td>98758</td>
<td>40.53</td>
<td>-8</td>
<td>76936</td>
</tr>
<tr>
<td>Total</td>
<td>2629</td>
<td>243645</td>
<td>100</td>
<td>-242</td>
<td>72573</td>
</tr>
</tbody>
</table>

The Upper St. Lawrence is the most agriculturally intensive subbasin, dedicating 35% of its land to agricultural activities (87,000 acres). The Oswegatchie and Indian subbasins farm an additional 93,000 and 77,000 acres each, constituting 14% and 22% of their total area, respectively. The Oswegatchie and Indian subbasins have the highest count of surface water segments listed as impaired due to nutrients and requiring a TMDL under Section 303(d) of the Clean Water Act (CWA). The counts include state-assigned pollutants/causes identified as nutrients, organic enrichment/oxygen
depletion, algal growth, or noxious aquatic plants. These IDs are associated with excess nutrients and sediment transport via agricultural runoff. From 2001 to 2011, the St. Lawrence River watershed increased its agricultural lands by 1,100 acres with approximately 70% of those being in hydrologically connected zones that are comprised of wet areas with high runoff potential, causing concern for future impairment of adjacent waterbodies.

Only 3% of the St. Lawrence watershed area is classified as urban; this region is among the least populated areas of NYS. With the low population density, impervious cover occupies a low 0.7% of the area (Map 23). The highest percentage of impervious surfaces (2%) is within the Upper St. Lawrence subbasin.

The Adirondack Park is the governing authority of much of the area (44%) of the St. Lawrence River watershed (Map1). The Adirondack Park is a six-million-acre patchwork of public and private lands in northeastern New York. It cuts northeast from the southwestern corner of the Oswegatchie subbasin up to the middle of the Chateaugay-English subbasin. A significant proportion of this land is part of the Adirondack Forest Preserve, afforded constitutional protections that prevent the removal of timber. These lands are rich in both recreational opportunity and ecological significance.
4 Community Characteristics

4.1 Municipalities and Population

In all, one Indian territory (Saint Regis Mohawk Indian Territory), one city (Ogdensburg), 22 villages, and 76 towns are wholly or partially within New York’s St. Lawrence River watershed (Map 24, Table 5). The population density within the St. Lawrence River watershed is displayed in Map 25. The total watershed population in 2010 was 196,503, the most populous areas being Potsdam (16,075), Malone (14,799), Fort Drum (12,955), and Massena (12,245) (US Census Bureau 2010). The Upper St. Lawrence subbasin has the highest population density, but the Raquette subbasin hosts the largest population at 10,831 persons.

Table 5
Municipalities within the St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>Civil Boundary Type</th>
<th>Primary HUC8</th>
<th>Name</th>
<th>Population*</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Upper St. Lawrence (04150301)</td>
<td>Ogdensburg</td>
<td>11,128</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Village</td>
<td>Upper St. Lawrence (04150301)</td>
<td>Cape Vincent</td>
<td>726</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clayton</td>
<td>1978</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alexandria Bay</td>
<td>1,078</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morristown</td>
<td>395</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waddington</td>
<td>972</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>Oswegatchie (04150302)</td>
<td>Antwerp</td>
<td>686</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gouverneur</td>
<td>3,949</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Richville</td>
<td>323</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rensselaer Falls</td>
<td>332</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Huevelton</td>
<td>714</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Indian</td>
<td>Indian (04150303)</td>
<td>Antwerp</td>
<td>686</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Philadelphia</td>
<td>1,252</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evans Mills</td>
<td>621</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Theresa</td>
<td>863</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hammond</td>
<td>280</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Grasse</td>
<td>Grasse (04150304)</td>
<td>Canton</td>
<td>6,314</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Massena</td>
<td>10,936</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Raquette</td>
<td>Raquette (04150305)</td>
<td>Speculator</td>
<td>324</td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tupper Lake</td>
<td>3,667</td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norwood</td>
<td>1,657</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potsdam</td>
<td>9,428</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Civil Boundary Type</td>
<td>Primary HUC8</td>
<td>Name</td>
<td>Population*</td>
<td>County</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Salmon (04150307)</td>
<td>Brushton</td>
<td>474</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Malone</td>
<td>5,911</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td>Chateaugay-English (04150308)</td>
<td>Chateaugay</td>
<td>833</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Burke</td>
<td>211</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td>Town</td>
<td>Upper St. Lawrence (04150301)</td>
<td>Cape Vincent</td>
<td>2,777</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orleans</td>
<td>2,789</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alexandria</td>
<td>4,061</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hammond</td>
<td>1,191</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morristown</td>
<td>1,974</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clayton</td>
<td>5,153</td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lisbon</td>
<td>4,102</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Waddington</td>
<td>2,266</td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Oswegatchie (04150302)</td>
<td>Fine</td>
<td>1,512</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Clifton</td>
<td>751</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Pitcairn</td>
<td>846</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Edwards</td>
<td>1,156</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Fowler</td>
<td>2,202</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Gouverneur</td>
<td>7,085</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>De Kalb</td>
<td>2,434</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Oswegatchie</td>
<td>4,397</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Indian (04150303)</td>
<td>Theresa</td>
<td>2,905</td>
<td></td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td>Antwerp</td>
<td>1,846</td>
<td></td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td>Philadelphia</td>
<td>1,947</td>
<td></td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td>Le Ray</td>
<td>21,782</td>
<td></td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td>Wilna</td>
<td>6,427</td>
<td></td>
<td>Jefferson</td>
</tr>
<tr>
<td></td>
<td>Croghan</td>
<td>3,093</td>
<td></td>
<td>Lewis</td>
</tr>
<tr>
<td></td>
<td>Diana</td>
<td>1,709</td>
<td></td>
<td>Lewis</td>
</tr>
<tr>
<td></td>
<td>Rossie</td>
<td>877</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Macomb</td>
<td>906</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>De Peyster</td>
<td>998</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Grasse (04150304)</td>
<td>Colton</td>
<td>1,451</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Hermon</td>
<td>1,108</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Canton</td>
<td>10,995</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Russell</td>
<td>1,856</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Clare</td>
<td>105</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Pierrepont</td>
<td>2,589</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Madrid</td>
<td>1,735</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Civil Boundary Type</td>
<td>Primary HUC8</td>
<td>Name</td>
<td>Population*</td>
<td>County</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Raquette (04150305)</td>
<td>Louisville</td>
<td>3,145</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Webb</td>
<td>1,807</td>
<td></td>
<td>Herkimer</td>
</tr>
<tr>
<td></td>
<td>Long Lake</td>
<td>711</td>
<td></td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td>Arietta</td>
<td>304</td>
<td></td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td>Inlet</td>
<td>333</td>
<td></td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td>Indian Lake</td>
<td>1,342</td>
<td></td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td>Newcomb</td>
<td>436</td>
<td></td>
<td>Essex</td>
</tr>
<tr>
<td></td>
<td>North Elba</td>
<td>8,957</td>
<td></td>
<td>Essex</td>
</tr>
<tr>
<td></td>
<td>Harrietstown</td>
<td>5,709</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Tupper Lake</td>
<td>5,971</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Piercefield</td>
<td>310</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Arietta</td>
<td>304</td>
<td></td>
<td>Hamilton</td>
</tr>
<tr>
<td></td>
<td>Parishville</td>
<td>2,153</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Potsdam</td>
<td>16,041</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Norfolk</td>
<td>4,668</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Massena</td>
<td>12,883</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>St. Regis (04150306)</td>
<td>Santa Clara</td>
<td>345</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Hopkinton</td>
<td>1,077</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Waverly</td>
<td>1,022</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Brighton</td>
<td>1,435</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Duane</td>
<td>174</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Brandon</td>
<td>577</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Dickinson</td>
<td>823</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Lawrence</td>
<td>1,826</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Moira</td>
<td>2,934</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Brasher</td>
<td>2,512</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td></td>
<td>Stockholm</td>
<td>3,665</td>
<td></td>
<td>St. Lawrence</td>
</tr>
<tr>
<td>Salmon (04150307)</td>
<td>Franklin</td>
<td>1,140</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Malone</td>
<td>14,545</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Bangor</td>
<td>2,224</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Bombay</td>
<td>1,357</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Fort Covington</td>
<td>1,676</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Westville</td>
<td>1,819</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>Bellmont</td>
<td>1,434</td>
<td></td>
<td>Franklin</td>
</tr>
<tr>
<td>(04150308)</td>
<td>Dannemora</td>
<td>4,898</td>
<td></td>
<td>Clinton</td>
</tr>
<tr>
<td></td>
<td>Ellenburg</td>
<td>1,743</td>
<td></td>
<td>Clinton</td>
</tr>
<tr>
<td></td>
<td>Constable</td>
<td>1,566</td>
<td></td>
<td>Franklin</td>
</tr>
</tbody>
</table>
Civil Boundary Type
<table>
<thead>
<tr>
<th>Primary HUC8</th>
<th>Name</th>
<th>Population*</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Burke</td>
<td>1,465</td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Chateaugay</td>
<td>2,155</td>
<td>Franklin</td>
</tr>
<tr>
<td></td>
<td>Clinton</td>
<td>737</td>
<td>Clinton</td>
</tr>
<tr>
<td></td>
<td>Mooers</td>
<td>3,592</td>
<td>Clinton</td>
</tr>
</tbody>
</table>

* In some cases, only a portion of villages and towns lie within the watershed, so populations shown in the table cannot be summed to give the watershed population.

4.2 Regulatory and Programmatic Environment

The St. Lawrence River watershed is affected by regulations, plans, and programs at the federal, state, regional, county, and local level, as well as by collaborations involving nonprofit organizations and academic institutions, that are designed to help protect and maintain water quality and aquatic habitat within the St. Lawrence River watershed. The Project Team worked with a consultant (Rootz) to compile and review the local laws of the watershed municipalities and evaluate their effectiveness in protecting water quality and habitat from point- and nonpoint-source pollution.

4.2.1 Approach to Reviewing Local Laws, Plans, and Programs

The inventory and assessment of municipal measures to protect water resources in the St. Lawrence River watershed were based on a modified version of the process outlined by the Genesee/Finger Lakes Regional Planning Council (2006). Due to the extensive size of the watershed, a rigorous assessment on individual municipalities was not feasible, and therefore the regulatory environment was assessed at the County level. Existing local laws and tools that guide land use were identified by municipal nonpoint assessment forms completed by County Department of Planning and/or SWCD professional staff. The review of existing documents included:

- Comprehensive Plans/Land Use Plans/Rural Development Plans/Waterfront Revitalization Plans;
- Zoning, Site Plan Review and Subdivision Regulations; and
- Water Quality Protection Programs/Measures
- Waterbody/Shore Protection
- Floodplain Protection
- Waste Management
- Wastewater/On-site Septic
- Stormwater
- Agriculture
The resulting product is the St. Lawrence River Watershed Local Laws and Programs Affecting Water Quality (Appendix A). This document evaluates the current regulatory environment with respect to water quality and identifies improvements to local codes that would address water quality impacts from developmental activities more effectively.

4.2.2 Gap Assessment as Related to the Desired State

Within the St. Lawrence River watershed, multiple municipalities with several regulatory entities exist, which results in significant variation in regulatory tools and laws that address watershed resource protection. Some municipalities have greater resources available to them, regarding staffing, resources, and regulatory tools, while others are more vulnerable offering few local laws to manage water quality challenges. This variation is, in part, influenced by location within the Adirondack Park boundary. The APA is an important regulatory body, encompassing 44% of the watershed, and is responsible for maintaining protection of the forest preserve and regulating development on privately owned lands. This involves shoreline restrictions, tree removal, and protection of river systems and adjoining land.

Based on the results of the evaluation, most municipalities do not adequately address the comprehensive protection and preservation of water quality in their regulatory programs. At the time of local law assessment inventory, only 32%, 26%, and 29% of municipalities utilize land use planning tools and regulations to target waterbody/shoreline protection, on-site septic systems, and agriculture, throughout the watershed, respectively. On the contrary, waste and junkyard management (83%) and floodplain protection measures (66%) are most consistently addressed within the watershed. The St. Lawrence River Watershed Revitalization Plan will build upon the identified regulatory and programmatic gaps in local laws and programs to recommend laws and practices that could enhance sustainable land use and natural resource protection and future livelihood of the watershed.

4.3 Water Use

Water use in the St. Lawrence River watershed is divided among four predominant sectors; thermoelectric (59%, 25 MGD), domestic (42%, 14 MGD), industrial (7%, 3 MGD), and agricultural (<1%, 0.013 MGD, 12,500 gallons per day) (USEPA, Watershed Index Online, 2019; USEPA EnviroAtlas, 2015). Map 26 shows the locations of water withdrawals throughout the watershed and the sector associated with the withdrawal. NYS has the highest thermoelectric power water withdrawals in the northeastern United States (USGS 2015). Water for thermoelectric power is used to cool power-producing equipment. Map 27 depicts hydroelectric, thermoelectric, solar, and biomass energy generation plants within the watershed.
4.3.1 Drinking Water Sources

The St. Lawrence River provides drinking water to approximately four million people in the United States and Canada; in New York State, the river serves as public water supply for the City of Ogdensburg, Town of Louisville, and Villages of Massena, Clayton, and Alexandria Bay. The Oswegatchie River serves 3,949 residents in the town of Gouverneur. Surface waters from Lake Eaton, Tupper, Blue Mountain, Raquette, Cranberry and Star Lakes are used as municipal drinking water supplies for their surrounding municipalities (Annual Drinking Water Quality Reports, 2018).

Groundwater aquifers are the main source of drinking water in the region. Public water works utilize groundwater and surface water to serve 65% (128,897 individuals, 2014 SWDIS data) and 44% (86,011 individuals, 2014 SWDIS data) of the watershed’s population, respectively. Rural residents obtain potable water from deep wells drilled into bedrock. The NYSDEC Water Well Program mapped 973 water wells within the St. Lawrence River watershed, as depicted in the Water Wells map from the NYS GIS Clearinghouse (NYSDEC Division of Water 2016). This data represents only about 20% of private wells in NYS with records beginning post-2000.

Municipal water supplies from major aquifers, lakes and reservoirs, and wellheads are depicted in Map 26. The red dots on Map 26 refer to withdrawals for public water via publicly owned water utilities. The mapped water wells, shown as Xs, are designated community water systems—those that either serve at least 15 service connections used by year-round residents or regularly serve at least 25 year-round residents, such as local town and village water districts. A comprehensive list of Public Water Systems by county is maintained by the NYS Department of Health (NYSDOH, 2018).

The NYSDEC Water Quality Standards Program classifies surface waters for their best use, including water supply. Class A and AA waters are waterbodies classified as suitable for drinking and culinary purposes, as well as primary and secondary contact recreation and fishing. Table 6 summarizes Class A and AA surface waters of the St. Lawrence River watershed. A full list of assigned classifications to fresh surface waters within the St. Lawrence River watershed can be found in the New York Codes, Rules, and Regulations, Division of Water (6 CRR-NY 910.6).1

1 NYSDEC is planning a reclassification of some St Lawrence basin surface waters: “The Division of Water expects to propose upgrades to the classifications of certain surface waters in 6 NYCRR Part 910 (St. Lawrence River drainage basin). These reclassifications are necessary to meet federal Clean Water Act (CWA) goals for water quality and, if adopted, would result in higher classifications (and thus more stringent water quality standards) for some waters in this drainage basin. Numerous Class D surface waters, which only provide protection for fish survival, would be proposed to be upgraded to higher classifications (Class C or higher)” (NYSDEC 2019a).
Table 6

Class A and AA Waterbodies

<table>
<thead>
<tr>
<th>Waterbody Name</th>
<th>HUC12</th>
<th>Class A Stream Miles</th>
<th>Class A Lake Acres</th>
<th>Class AA Stream Miles</th>
<th>Class AA Lake Acres</th>
<th>% of HUC8 Streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint Lawrence River, Main Stem (0901-0004)</td>
<td>0415030101</td>
<td>100</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Saint Lawrence River, Main Stem (0901-0015)</td>
<td>0415030102</td>
<td>31</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Saint Lawrence River, Main Stem (0901-0002)</td>
<td>0415030103</td>
<td>11</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Saint Lawrence River, Main Stem (0901-0001)</td>
<td>0415030103</td>
<td>43</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cranberry Lake (0905-0007)</td>
<td>0415030201</td>
<td>--</td>
<td>6795</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Star Lake (0905-0180)</td>
<td>0415030202</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie River, Middle, and tribs (0905-0101)</td>
<td>0415030206</td>
<td>199</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie River, Middle, Main Stem (0905-0096)</td>
<td>0415030208</td>
<td>28</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Indian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Creek, Upper, and tribs (0906-0043)</td>
<td>0415030303</td>
<td>14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Grasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little River, Upper, and tribs (0904-0019)</td>
<td>0415030403</td>
<td>--</td>
<td>--</td>
<td>58</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Raquette</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Mountain Lake (0903-0204)</td>
<td>0415030501</td>
<td>--</td>
<td>1235</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Raquette Lake (0903-0081)</td>
<td>0415030501</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5197</td>
<td></td>
</tr>
<tr>
<td>Lake Eaton (0903-0056)</td>
<td>0415030503</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>Tupper Lake (0903-0076)</td>
<td>0415030504</td>
<td>--</td>
<td>4858</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Piercefield Flow (0903-0075)</td>
<td>0415030505</td>
<td>--</td>
<td>471</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Eagle Crag Lake, more (0903-0114)</td>
<td>0415030505</td>
<td>--</td>
<td>144</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Trib to Upper Dead Creek and tribs (0903-0113)</td>
<td>0415030505</td>
<td>--</td>
<td>--</td>
<td>7</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Raquette River, Middle, and tribs (0903-0064)</td>
<td>0415030507</td>
<td>40</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>St. Regis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osgood Pond (0902-0148)</td>
<td>0415030601</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Spitfire Lake, Upper Saint Regis Lake (0902-0159)</td>
<td>0415030604</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>978</td>
<td></td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterbody Name</td>
<td>HUC12</td>
<td>Class A Stream Miles</td>
<td>Class A Lake Acres</td>
<td>Class AA Stream Miles</td>
<td>Class AA Lake Acres</td>
<td>% of HUC8 Streams</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Standish Brook, Upper, and tribs (0902-0062)</td>
<td>0415030801</td>
<td>--</td>
<td>--</td>
<td>7</td>
<td>--</td>
<td>1%</td>
</tr>
</tbody>
</table>

SOURCE: 6 CRR-NY 910.6

Public utilities treat most water used for public drinking water supplies, but protecting source water from contamination can reduce treatment costs and risks to public health. Source water assessments provide water utilities with information to help them identify potential sources of contamination and implement management measures to prevent, reduce, or eliminate risks to the drinking water supply. Source water assessments have identified 503,000 acres in the watershed as Source Water Protection Areas, areas of increased susceptibility to contamination (EPA Safe Drinking Water Information Systems, SDWIS, 2014 geospatial data).

4.4 Public Access and Recreation

Residents of, and visitors to, the St. Lawrence River watershed have diverse opportunities to enjoy water-related recreational activities including boating, swimming, hunting, fishing, and nature observation. Public lands within the Adirondack State Park are managed by NYSDEC. Map 28 depicts NYSDEC recreational public access points that support activities such as boating, camping, canoeing, fishing, hiking, and nature observation. Late spring and summer months are typically when recreational demand is highest. Recreational freshwater fishing demand is highest for the Raquette (81,600 fishing day trips/year), Oswegatchie (69,300 fishing day trips/year), and St. Regis (55,900 fishing day trips/year) subbasins.

Most of the shoreline along the St. Lawrence is privately owned with a few recreational state parks managed by the Office of Parks, Recreation, and Historic Preservation (OPRHP). Surface water access to the St. Lawrence River is predominantly provided by privately owned sites such as recreational clubs, marinas, restaurants, motels, and residential properties. However, demand for improving and enhancing opportunities for public access to swimming, fishing, and boating has increased throughout the watershed.

4.5 Infrastructure

4.5.1 Dams

Dams serve many purposes within the St. Lawrence River watershed including recreation, flood control and storm management, navigation, water supply, and hydroelectric power generation. There is a total of 190 dams in the St. Lawrence River watershed with the most being in the Raquette and Oswegatchie subbasins (Map 27). Table 7 lists the number of dams within each HUC10 of the St. Lawrence River watershed.
The NYS Dam Inventory assigns a hazard classification to each dam structure based on the height of the dam, maximum capacity, physical characteristics, and downstream land use. A dam would be considered a high hazard dam (Class C) when in the case that it was to fail, loss of life and significant damage to homes, commercial buildings, public utilities, highways and roads would be expected to occur. Moderate hazard dams (Class B) would result in some damage to homes, buildings, infrastructure, and public utilities in the circumstance of a dam failure. Low hazard (Class A) dams would be expected to only damage isolated buildings, vacant lands, or rural roads in the event of failure. Table 8 lists the 21 high hazard dams, designated Class C by NYSDEC and their respective subwatershed.

Table 7
New York State Dam Classifications, St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>HUC10</th>
<th>Low Hazard (A)</th>
<th>Moderate Hazard (B)</th>
<th>High Hazard (C)</th>
<th>Total Dams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>21</td>
<td>10</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>Indian</td>
<td>24</td>
<td>2</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Grasse</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Raquette</td>
<td>44</td>
<td>6</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>St. Regis</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Salmon</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>St. Lawrence River Watershed</td>
<td>145</td>
<td>24</td>
<td>21</td>
<td>190</td>
</tr>
</tbody>
</table>

SOURCE: NYS Dam Inventory

Table 8
High Hazard (Class C) Dams in the St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>Dam Name</th>
<th>Length (ft)</th>
<th>Height (ft)</th>
<th>Max Discharge (cubic ft/s)</th>
<th>Max Storage (acre-ft)</th>
<th>Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Sault Dam</td>
<td>2960</td>
<td>132</td>
<td>873000</td>
<td>2000000</td>
<td>Upper St. Lawrence</td>
</tr>
<tr>
<td>Robert Moses/Robert H Saunders Dam</td>
<td>3200</td>
<td>167</td>
<td>873000</td>
<td>2000000</td>
<td>Upper St. Lawrence</td>
</tr>
<tr>
<td>Massena Intake Dam</td>
<td>4000</td>
<td>75</td>
<td>0</td>
<td>5000</td>
<td>Upper St. Lawrence</td>
</tr>
<tr>
<td>Iroquois Dam</td>
<td>1980</td>
<td>72</td>
<td>310000</td>
<td>50</td>
<td>Upper St. Lawrence</td>
</tr>
<tr>
<td>Cranberry Lake Dam</td>
<td>360</td>
<td>24</td>
<td>14220</td>
<td>57400</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Newton Falls Dam</td>
<td>640</td>
<td>40</td>
<td>1331</td>
<td>16000</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Flat Rock Dam</td>
<td>680</td>
<td>80</td>
<td>10500</td>
<td>5020</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Ogdensburg Water-Power Company Dam</td>
<td>400</td>
<td>19</td>
<td>26600</td>
<td>4175</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Browns Falls Dam</td>
<td>870</td>
<td>70</td>
<td>8900</td>
<td>3593</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Dam Name</td>
<td>Length (ft)</td>
<td>Height (ft)</td>
<td>Max Discharge (cubic ft/s)</td>
<td>Max Storage (acre-ft)</td>
<td>Basin</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Eel Weir Dam</td>
<td>1020</td>
<td>30</td>
<td>52120</td>
<td>810</td>
<td>Oswegatchie</td>
</tr>
<tr>
<td>Carry Falls Dam</td>
<td>623</td>
<td>66</td>
<td>31800</td>
<td>117595</td>
<td>Raquette</td>
</tr>
<tr>
<td>Blake Falls Dam</td>
<td>1593</td>
<td>70</td>
<td>50000</td>
<td>37800</td>
<td>Raquette</td>
</tr>
<tr>
<td>Rainbow Falls Dam</td>
<td>2420</td>
<td>91</td>
<td>62800</td>
<td>25800</td>
<td>Raquette</td>
</tr>
<tr>
<td>Higley Falls Power Dam</td>
<td>435</td>
<td>50</td>
<td>16540</td>
<td>13960</td>
<td>Raquette</td>
</tr>
<tr>
<td>South Colton Dam</td>
<td>877</td>
<td>50</td>
<td>50300</td>
<td>4500</td>
<td>Raquette</td>
</tr>
<tr>
<td>Norwood Dam</td>
<td>910</td>
<td>30</td>
<td>17800</td>
<td>4080</td>
<td>Raquette</td>
</tr>
<tr>
<td>Five Falls Dam</td>
<td>1655</td>
<td>60</td>
<td>45400</td>
<td>3090</td>
<td>Raquette</td>
</tr>
<tr>
<td>Colton Dam</td>
<td>465</td>
<td>27</td>
<td>31770</td>
<td>2310</td>
<td>Raquette</td>
</tr>
<tr>
<td>Norfolk Dam</td>
<td>500</td>
<td>29</td>
<td>22030</td>
<td>108</td>
<td>Raquette</td>
</tr>
<tr>
<td>East Norfolk Dam</td>
<td>423</td>
<td>20</td>
<td>16530</td>
<td>94</td>
<td>Raquette</td>
</tr>
<tr>
<td>Allen Falls Development Dam</td>
<td>766</td>
<td>40</td>
<td>25400</td>
<td>1780</td>
<td>St. Regis</td>
</tr>
</tbody>
</table>

SOURCE: NYS Dam Inventory

Dams serve as a major component of the watersheds’ energy supply. Hydroelectric plants are reliable, cost-effective and support less-flexible sources of renewable energy. The Robert Moses-Robert H. Saunders Power dam first generated power in 1958 as part of the St. Lawrence-FDR project. It has 32 turbine-generators divided equally by the international border between the New York Power Authority (NYPA) and Canada’s Ontario Hydro. The NYPA’s 16 generating units can produce 800,000 kilowatts of electricity, more than enough energy to light a city the size of Washington, D.C. The Long Sault and Iroquois dams were also built as part of the St. Lawrence-FDR project.

4.5.2 Roads, Highways, and Railways

Roads, highways, and railways are shown on Map 29. The primary east-west highways are State Route 11 and 37, which runs parallel to the St. Lawrence River, and Highway 30, which runs north to south through Malone. The watershed includes over 450 miles of railways with track CSXT crossing through Gouverneur up to Massena and track ADCX traversing through the Adirondacks passing through Tupper Lake.

Roads, highways, and related infrastructure such as parking lots contribute to the amount of impervious area in a watershed. The St. Lawrence River watershed contains a small amount of impervious cover at 0.67%, covering a total area of approximately 24,000 acres (Map 23). The greatest concentration of impervious cover lies within the Upper St. Lawrence and Indian River subbasins due to developed centers of Ogdensburg and Fort Drum.
4.6 Industries and Employment

Significant industries within the counties of the St. Lawrence River watershed include manufacturing, educational services, health care, leisure and hospitality, public administration/government, and trade, transportation, and utilities (NYSDOL, 2015). The public sector employs nearly 20,000 people with an average annual wage of $53,300, making it the largest employment sector of the North Country. The educational services sector, carrying 19,000 jobs and an average annual wage of $43,400 in 2015, lost hundreds of jobs between 2009 and 2014 due to declines in primary and secondary schools. The hospitality sector employs the third most workers of any sector in the North Country economy with more than 11,400 workers and average annual wages of $14,500. The North Country region has an average annual unemployment rate of 5.3%, ranging from 4-7.5% throughout the year due to seasonal employment (NYSDOL, 2018).
5 Existing Water Quality Conditions

The NYSDEC Division of Water conducts regular, periodic assessments of waterbodies in the state to fulfill certain requirements of the Federal Clean Water Act (CWA). Waters are assessed according to their designated best use (defined by 6 CRR-NY 910.6) and compiled in an inventory database called the Waterbody Inventory/Priority Waterbodies List (WI/PWL). For waters classified as impaired, the Clean Water Act also requires states to consider a strategy, such as the development of a Total Maximum Daily Load (TMDL), to reduce the input of specific pollutant(s) restricting waterbody use. Impaired waterbodies are listed on the Section 303(d) list.

5.1 Waterbody Inventory and Priority Waterbodies

The Division of Water’s WI/PWL database documents current water quality information, characterizes known or suspected water quality problems and issues, and tracks progress toward their resolution. A major source of data used to characterize waterbodies in the WI/PWL about is NYSDEC’s Rotating Integrated Basin Studies (RIBS), which sample water quality and macroinvertebrates in various regions on a five-year rotating basis. The WI/PWL assessments used here for the St. Lawrence River are based primarily on data collected through the 2014 NYSDEC sampling season, though some records are dated 2016.

The PWL identifies seven assessment classifications:

- **Impaired**: Waterbodies with well documented water quality problems that result in precluded or impaired uses
- **Minor impacts**: Waterbodies where less severe water quality impacts are apparent but uses are still considered fully supported
- **Needs verification**: Segments that are thought to have water quality problems or impact but for which there is not sufficient of definitive documentation
- **Threatened**: Waterbodies for which uses are not restricted and no water quality problems currently exist, but where specific land use or other changes in the surrounding watershed are known or strongly suspected of threatening water quality
- **Threatened (possible)**: Waterbodies for which uses are not restricted and no water quality problems currently exist, but where waterbody classification, distinct uses, or other considerations make the water more susceptible to threats and additional protection efforts are warranted
- **No known impact**: Segments where monitoring data and information indicate that there are no use restrictions or other water quality impacts/issues
- **Unassessed**: Segments where there is no available water quality information to assess the support of designated uses
An overview of the PWL status for waterbodies in the St. Lawrence River watershed is presented in Figure 2. The WI/PWL assessed 52% (6,212 miles) of the total 12,030 miles of streams and rivers within the St. Lawrence River drainage basin. About 38% of the assessed stream miles are characterized as impaired, minorly impacted, or threatened. Thirteen (13%, 781 miles) of assessed stream miles were classified as impaired, signifying that the waters do not fully support their designated uses.

The 2016 WI/PWL assessed 57% of total lake acres within the watershed. Eighty percent (80%, 47,654 lake acres) of assessed (59,386) lake acres within the St. Lawrence River watershed were found to be impaired, minorly impacted, or threatened. About 72% of lake acres were found to be impaired and not supporting their designated use.

WI/PWL characterizations of lakes and streams in specific subwatersheds are shown in Table 9 and Map 30.
Table 9
Priority Waterbodies Assessment of St. Lawrence River Streams and Lakes

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Impaired</th>
<th>Minor Impacts</th>
<th>Threatened</th>
<th>No Known Impacts</th>
<th>Unassessed</th>
<th>Assessed Impacted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>254</td>
<td>204</td>
<td>--</td>
<td>--</td>
<td>166</td>
<td>100</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>298</td>
<td>181</td>
<td>265</td>
<td>157</td>
<td>1266</td>
<td>57</td>
</tr>
<tr>
<td>Indian</td>
<td>56</td>
<td>182</td>
<td>--</td>
<td>115</td>
<td>683</td>
<td>50</td>
</tr>
<tr>
<td>Grasse</td>
<td>30</td>
<td>175</td>
<td>--</td>
<td>707</td>
<td>548</td>
<td>19</td>
</tr>
<tr>
<td>Raquette</td>
<td>142</td>
<td>48</td>
<td>--</td>
<td>539</td>
<td>1677</td>
<td>26</td>
</tr>
<tr>
<td>St. Regis</td>
<td>--</td>
<td>58</td>
<td>--</td>
<td>841</td>
<td>722</td>
<td>5</td>
</tr>
<tr>
<td>Salmon</td>
<td>--</td>
<td>102</td>
<td>264</td>
<td>218</td>
<td>332</td>
<td>63</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>--</td>
<td>84</td>
<td>32</td>
<td>398</td>
<td>423</td>
<td>22</td>
</tr>
<tr>
<td>Watershed</td>
<td>781</td>
<td>1034</td>
<td>560</td>
<td>2974</td>
<td>5818</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Impaired</th>
<th>Minor Impacts</th>
<th>Threatened</th>
<th>No Known Impacts</th>
<th>Unassessed</th>
<th>Assessed Impacted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1736</td>
<td>--</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>8581</td>
<td>--</td>
<td>--</td>
<td>638</td>
<td>8457</td>
<td>92</td>
</tr>
<tr>
<td>Indian</td>
<td>8487</td>
<td>2263</td>
<td>474</td>
<td>292</td>
<td>4998</td>
<td>97</td>
</tr>
<tr>
<td>Grasse</td>
<td>56</td>
<td>--</td>
<td>--</td>
<td>1294</td>
<td>2248</td>
<td>4</td>
</tr>
<tr>
<td>Raquette</td>
<td>21157</td>
<td>225</td>
<td>--</td>
<td>6220</td>
<td>21167</td>
<td>76</td>
</tr>
<tr>
<td>St. Regis</td>
<td>1782</td>
<td>356</td>
<td>1656</td>
<td>850</td>
<td>4568</td>
<td>82</td>
</tr>
<tr>
<td>Salmon</td>
<td>54</td>
<td>--</td>
<td>--</td>
<td>667</td>
<td>1174</td>
<td>4</td>
</tr>
<tr>
<td>Chateaugay-English</td>
<td>2564</td>
<td>--</td>
<td>--</td>
<td>543</td>
<td>390</td>
<td>83</td>
</tr>
<tr>
<td>Watershed</td>
<td>42681</td>
<td>2843</td>
<td>2129</td>
<td>10505</td>
<td>44739</td>
<td>80</td>
</tr>
</tbody>
</table>

SOURCE: NYSDEC WI/PWL 2016a

5.2 Section 303(d) List

Forty-three waterbodies in the St. Lawrence River watershed are classified as impaired and are therefore included on the Final NYS 2016 303(d) list. These waterbodies are listed in Table 10, which also indicates the specific pollutants causing impairment and their sources. Data reported in this document is from NYS’s Final 2016 Section 303(d) List (NYSDEC 2016b).

The St. Lawrence River drainage basin lists four waterbodies under Section 303(d) Part 1, classifying them as waters with impairment requiring development of a total maximum daily load. A TMDL identifies the maximum amount of a pollutant that a waterbody can receive and specifies reductions needed to meet water quality standards. Waterbodies in need of a TMDL include the Lower Raquette River and minor tributaries (pathogens from onsite waste treatment systems), Black Lake Outlet -
Black Lake (phosphorus from agricultural runoff), Fish Creek and minor tributaries (phosphorus from on-site waste treatment systems), and Little River and tributaries (priority organics from industrial waste disposal).

Twenty-six waterbodies in the watershed are listed under Section 303(d) Part 2a, which means they are impaired by atmospheric deposition, or acid rain. In 2006, the NYSDEC completed TMDLs for 143 acid-impaired lakes within the New York’s Forest Preserve, the majority of which had been added to Section 303(d) in 1998. The Forest Preserve has expanded in recent years, and the current TMDL is focused on the remaining affected lakes on the 2012 Section 303(d) list.

Thirteen of the St. Lawrence River drainage basin’s waterbodies are listed under Part 2b, meaning they are subject to fish consumption advisories due to contamination with dioxin, pesticides, PCBs, and mercury. Note that Stark Fall Reservoir (0903-0073) and Willis Pond (0903-0105) have been added to the Draft 2018 303(d) List under Part 2b. A TMDL was developed to target mercury pollution in the Northeast Region in 2007.

In addition to the classifications shown in Table 10, Appendix A of Section 303(d) lists thirty-four waterbodies in the watershed that are classified as smaller lakes impaired by atmospheric deposition of acid rain.

Table 10

NYS 303(d) Listed Waterbodies in the St. Lawrence River Watershed

<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Waterbody Name</th>
<th>Type</th>
<th>Class</th>
<th>Cause/Pollutant</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1—Requiring TMDL Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raquette</td>
<td>Raquette River, Lower, and minor tribs (0903-0059)</td>
<td>River</td>
<td>B</td>
<td>Pathogens</td>
<td>Onsite WTS</td>
</tr>
<tr>
<td>Indian</td>
<td>Black Lake Outlet, Black Lake (0906-0001)</td>
<td>Lake</td>
<td>B</td>
<td>Nutrients (P)</td>
<td>Agriculture</td>
</tr>
<tr>
<td></td>
<td>Fish Creek and minor tribs (0906-0026)</td>
<td>River</td>
<td>C</td>
<td>Nutrients (P)</td>
<td>Onsite WTS</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>Little River and trib (0905-0090)</td>
<td>River</td>
<td>C(T)</td>
<td>Priority Organics</td>
<td>Industry/Landfill</td>
</tr>
<tr>
<td>Part 2a—Impaired due to atmospheric deposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grasse</td>
<td>Len, Wolf, Beaver Ponds (0904-0002)</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td>Salmon</td>
<td>Wolf Pond (0902-0006)</td>
<td>Lake</td>
<td>B</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Catamount Pond (0902-0092)</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td>St. Regis</td>
<td>Lower, Upper Twin Ponds, more (0902-0045)</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td>Subwatershed</td>
<td>Waterbody Name</td>
<td>Type</td>
<td>Class</td>
<td>Cause/Pollutant</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>St. Lawrence</td>
<td>Duck Pond, Ben</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>z Pond (0902-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diamond Lake</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0902-0011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raquette</td>
<td>Rock Pond</td>
<td>Lake</td>
<td>B(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Pond</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Pine</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Pond (0903-002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spruce Crouse,</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Spring, Graves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponds (0903-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halfmoon Pond</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0032)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Pond</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmon Pond</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilgrim Pond</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0043)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haymarsh Ponds</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Lone Pond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0903-0017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lost Pond</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0903-0057)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>W. Br. Oswegatchie (0905-0003)</td>
<td>River</td>
<td>FP</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Dry Timber Lake</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Gregg Lake, Gr</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>ee, Twin, Loon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hollow Ponds (</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0905-0035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muskrat Pond</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0905-0062)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bear Pond, Dia</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>na Pond (0905-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0062)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower, Middle,</td>
<td>Lake</td>
<td>D</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Upper South</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pond (0905-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desert, Jakes,</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>Buck, Hog</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponds (0905-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crystal Lake</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>(0905-0030)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor Lake Trib</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td></td>
<td>to Upper Osweg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>atchie (0905-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subwatershed</td>
<td>Waterbody Name</td>
<td>Type</td>
<td>Class</td>
<td>Cause/Pollutant</td>
<td>Source</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>Gull Lake (0905-0072)</td>
<td>Lake</td>
<td>C(T)</td>
<td>Acid/Base (pH)</td>
<td>Atmospheric Deposition</td>
</tr>
<tr>
<td>Part 2b—Impaired with respect to fish consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper St. Lawrence</td>
<td>St Lawrence River (0901-0001)</td>
<td>River</td>
<td>A</td>
<td>Dioxin</td>
<td>Contaminated Sediment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td>St Lawrence River (0901-0002)</td>
<td>River</td>
<td>A</td>
<td>Dioxin</td>
<td>Contaminated Sediment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td>St Lawrence River (0901-0015)</td>
<td>River</td>
<td>A</td>
<td>Dioxin</td>
<td>Contaminated Sediment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td>St Lawrence River (0901-0004)</td>
<td>River</td>
<td>A</td>
<td>Dioxin</td>
<td>Contaminated Sediment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td>Massena Power Canal (0904-0012)</td>
<td>River</td>
<td>D</td>
<td>PCBs</td>
<td>Industr, Contam Sed</td>
</tr>
<tr>
<td></td>
<td>Grasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grasse River (0904-0009)</td>
<td>River</td>
<td>B</td>
<td>PCBs</td>
<td>Industr, Contam Sed</td>
</tr>
</tbody>
</table>

SOURCE: NYS 303(d) list (2016)
6 Waterbody Impairments and Potential Sources of Pollution

This section begins with an overview of known impairments and stresses to waterbodies in the St. Lawrence River watershed, and then summarizes potential sources of pollution that may contribute to those impairments and stresses.

6.1 Impairments to Designated Best Use

NYSDEC assesses impacts to waterbodies based on their designated best use and characterizes them as impaired or stressed if their best use is not being met, as was discussed in section 5. Waters of the St. Lawrence River watershed are best used for fishing, recreation, swimming, and potable water. Figure 3 summarizes the percentage of streams and lakes in the watershed that do not meet their designated best use (including waterbodies found to be impaired, displaying minor impacts, threatened, and/or needing verification).

Figure 3
Impairments or Stresses Impacting the Designated Best Use of Streams and Lakes

Aquatic life is “stressed” in 43% and 52% of impacted streams and lakes, respectively. The mountain and wilderness areas are host to cold-water fisheries, while lakes and streams in the open and wooded lowlands support warmwater fisheries. Fish consumption is affected in 14% of streams and 22% of lakes in the watershed. Use of 33% of streams and 21% of lakes are impacted in ways that affect recreation and swimming.
6.2 Impacts and Stressors Preventing Waterbodies from Meeting Their Best Uses

The St. Lawrence River watershed has experienced numerous ecological impacts associated with the stresses brought on by such human activities as industry, commercial and recreational navigation, agriculture, and development. Figure 4 characterizes the most frequently cited pollutants and stressors affecting water quality according to the 2016 NYSDEC WI/PWL and 303(d) List.

Pollutants and sources affecting water quality in the basin differ in streams and lakes. Nutrients (25% of assessed stream miles, 1,500 miles), priority organics such as PCBs, dioxins and PAHs (14%, 875 miles), and sediment (13%, 810 miles) are the most common pollutants of streams. Lakes in the watershed are primarily impacted by mercury (47%, 28,000 acres), excessive algal and plant growth (21%, 12,600 acres), and acidic waters (19%, 11,200 acres). Other threats to water quality in the watershed include community composition changes and invasive species, silt/sediment transport, salinization, and pathogens.

![Figure 4: Pollutants and Stressors of Waterbodies](source: NYS WI/PWL & 303(d) List, 2016)

The subsections below discuss causes for impairment in lakes and streams that are not meeting their designated best uses of fish consumption, aquatic life, recreation, and water supply.
6.2.1 Mercury

Impaired Use: Fish Consumption

Fish consumption advisories have been issued due to elevated levels of mercury in certain fish species and sediments of the St. Lawrence River watershed. In the aquatic environment, microbial processes can metabolize mercury into its organic form, methylmercury. Acidic lake conditions have been shown to stimulate this conversion. Methylmercury is a potent neurotoxin that bioaccumulates in fish and aquatic organisms. Human exposure to mercury is largely through consumption of contaminated fish, where developing fetuses and young children are the most sensitive populations. Approximately 47% of assessed lake acres in the watershed are threatened, stressed, or impaired due to mercury found in sediments, waters, and fish. NYS has issued blanket and regional advisories for all waters in the Adirondack region concerning consumption of specific species. The advisories include additional limits on fish consumption for women of child-bearing age and all children.

6.2.2 Contaminated Sediment

Impaired Use: Fish Consumption

As a result of historical industrial practices and improper waste disposal, stream bottom sediments in portions of the St. Lawrence River watershed have been contaminated by priority organics (14% of assessed streams, 876 miles) and pesticides (11%, 656 miles). The Upper St. Lawrence subbasin at the St. Lawrence River and Massena Power Canal, the Oswegatchie subbasin at Little River and tributaries, and the Grasse subbasin at a section of the Grasse River are listed on the 2016 303(d) list due to priority organics contamination of sediment. The pollutants are dioxins, PCBs, and Mirex (an organochlorine insecticide), known to be bioaccumulative and carcinogenic. Benthic organisms exposed to contaminated sediment can accumulate these compounds through oral exposure. These compounds bioaccumulate to high concentrations along the food chain, making some species of fish unsuitable for human consumption.

6.2.3 Acidic Waters

Impaired Use: Aquatic Life

Acidic waters are the third leading pollutant of lakes of the St. Lawrence River watershed, affecting 19% (11,167 lake acres) of assessed lake acres and an additional 400 stream miles (WI/PWL, 2016). Acidified waters have many ecological effects, especially on aquatic life. These waters leach nutrients and metals (e.g., calcium, aluminum) from soil clay minerals, which then flow across the surface as runoff water into streams and lakes or sink into the soil. Aluminum is toxic to vegetation at high levels and impairs a plant’s ability to take up water and withstand environmental stressors, while the loss of soil nutrients can stunt plant growth and productivity. Leached aluminum can interfere with ion regulation in aquatic animals and can accumulate on the surface of fish gills, leading to respiratory dysfunction. In addition, low pH and increased aluminum levels have been shown to
cause chronic stress to fish, resulting in lower body weight and size that makes them less capable of competing for food and habitat. Fish reproduction is adversely impacted by acidic waters; calcium levels in female fish become lower to the point where egg production or pass is not viable, or larvae development is abnormal. Aquatic community composition changes and biodiversity decreases as lakes and streams become more acidic and viable only for fish and plant species that can tolerate lower pH levels. Even fish species that are more tolerant of acidic waters may suffer population impacts due to decreased food supply.

6.2.4 Invasive Species

Impaired Uses: Aquatic Life, Recreation

Native aquatic species in the St. Lawrence River watershed are vulnerable to the presence of invasive species—nonnative organisms, such as rooted, aquatic plants, algae, animals, bacteria, viruses, and insects, that can harm humans or the environment. Invasive species pose a threat to aquatic habitat, nutrient cycling, and a lake or stream’s capacity to fully support its designated uses. Table 11 lists known invasive species and “watch” or “prevention” species referenced by the Partnerships for Regional Invasive Species Management (PRISMs), which coordinate invasive species management and monitoring efforts. Although the 2016 WI/PWL (2016) listed only three St. Lawrence River watershed waterbodies as impacted by invasive species (1,767 acres, 3%), research by the St. Lawrence-Eastern Lake Ontario (SLELO) Partnership, and Adirondack Park Invasive Plant Program (APIPP), and the Adirondack Watershed Institute has documented the widespread scale of invasives.

Typically, invasives grow and reproduce quickly and spread aggressively, altering community dynamics, decreasing biodiversity, and threatening native wildlife. For example, zebra and quagga mussels blanket the bottoms of many waters in the St. Lawrence River watershed, filtering water and increasing water clarity as they consume plankton that serve as a food source for native populations. Increased clarity allows more sunlight to penetrate the water column, which creates ideal conditions for algae to grow and thus can contribute to algal blooms. Zebra and quagga mussels also impact recreation; beach areas that have been inhabited by the mussels provide a rough and sharp blanket on the bottom creating a hazard and unpleasant experience for swimmers. Pipes, boats, and water intake structures often become coated with zebra and quagga mussels causing severe impacts on the functionality of the pipes or structure.

Two especially significant invasive species have been the target of management efforts in the watershed. Water chestnut (Trapa natans) has clogged waterways by forming dense mats that limit light penetration into the water and impact native aquatic plants beneath the canopy. The reduced plant growth underneath, combined with the dieback and decomposition of water chestnut each year, can lead to reduced dissolved oxygen levels that affect aquatic life and can potentially lead to fish kills. Boaters and other recreationists also find water chestnut to be a nuisance and a hazard.
Eurasian milfoil (*Myriophyllum spicatum*) competes aggressively with native aquatic plants, growing in dense mats that interfere with fishing, swimming, and recreation access. This plant can grow in a variety of environments and sediment types, contributing to its widespread distribution. The Adirondack Park and lake associations are actively working to reduce its presence, but once established it is very difficult to eliminate.

Additional impacts related to invasive species are discussed below in the section on excessive plant growth.

Table 11

Target and Prevention Invasive Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Scientific Name</th>
<th>PRISM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target/General Species</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian Clam</td>
<td>Corbicula fluminea</td>
<td>APIPP</td>
</tr>
<tr>
<td>Asian Jumping Worm</td>
<td>Amynthas spp.</td>
<td>SLELO</td>
</tr>
<tr>
<td>Chinese Mystery Snail</td>
<td>Cipangopaludina chinensis</td>
<td>APIPP</td>
</tr>
<tr>
<td>Curly-leaf Pondweed</td>
<td>Potamogeton crispus</td>
<td>APIPP</td>
</tr>
<tr>
<td>Eurasian Milfoil</td>
<td>Myriophyllum spicatum</td>
<td>APIPP</td>
</tr>
<tr>
<td>European Frog-bit</td>
<td>Hydrocharis morsus-ranae</td>
<td>APIPP</td>
</tr>
<tr>
<td>Fanwort</td>
<td>Cabomba caroliniana</td>
<td>APIPP</td>
</tr>
<tr>
<td>Fishhook Waterlea</td>
<td>Cercopais pengoi</td>
<td>APIPP</td>
</tr>
<tr>
<td>Phragmites</td>
<td>Phragmites australis</td>
<td>SLELO</td>
</tr>
<tr>
<td>Round Goby</td>
<td>Neogobius melanostomus</td>
<td>SLELO</td>
</tr>
<tr>
<td>Spiny waterflea</td>
<td>Bythotrephes longimanus</td>
<td>APIPP/SLELO</td>
</tr>
<tr>
<td>Spring Viraemia of Carp (SVC)</td>
<td>Spring viraemia</td>
<td>SLELO</td>
</tr>
<tr>
<td>Variable-leaf Watermilfoil</td>
<td>Myriophyllum heterophyllum</td>
<td>APIPP</td>
</tr>
<tr>
<td>Viral Hemorrhagic Septicemia</td>
<td></td>
<td>SLELO</td>
</tr>
<tr>
<td>Water Chestnut</td>
<td>Trapa natans</td>
<td>APIPP/SLELO</td>
</tr>
<tr>
<td>Yellow Iris</td>
<td>Iris pseudacorus</td>
<td>APIPP/SLELO</td>
</tr>
<tr>
<td>Zebra Mussels</td>
<td>Dreissena polymorpha</td>
<td>APIPP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevention Species</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asian Clam</td>
<td>Corbicula fluminea</td>
<td>SLELO</td>
</tr>
<tr>
<td>Didymo</td>
<td>Didymosphenia geminate</td>
<td>SLELO</td>
</tr>
<tr>
<td>Fanwort</td>
<td>Cabomba caroliniana</td>
<td>SLELO</td>
</tr>
<tr>
<td>Hemimysis</td>
<td>Hemimysis anomala</td>
<td>SLELO</td>
</tr>
<tr>
<td>Hemlock Woolly Adelgid</td>
<td>Adelges tsugae</td>
<td>SLELO</td>
</tr>
<tr>
<td>Hydrilla</td>
<td>Hydrilla verticillata</td>
<td>APIPP/SLELO</td>
</tr>
<tr>
<td>New Zealand Mud Snail</td>
<td>Potamopyrgus antipodarum</td>
<td>SLELO</td>
</tr>
<tr>
<td>Quagga Mussel</td>
<td>Dreissena rostriformis bugensis</td>
<td>APIPP</td>
</tr>
<tr>
<td>Rusty Crayfish</td>
<td>Orconectes rusticus</td>
<td>APIPP/SLELO</td>
</tr>
<tr>
<td>Silber, Big Head and Grass Carp</td>
<td>Ctenopharyngodon spp,</td>
<td>SLELO</td>
</tr>
</tbody>
</table>
6.2.5 Nutrients

Impaired Uses: Aquatic Life, Recreation

Although nutrients are required to support healthy ecosystems, excessive nutrients can harm water supplies, recreational uses, and aquatic life. Nutrient contamination of surface waters, primarily attributed to nitrogen and phosphorus, has been a longstanding issue that is not unique to the St. Lawrence River watershed. The WI/PWL cited nutrients as the primary pollutant of streams in the St. Lawrence River watershed, affecting 1,520 miles (24% of the assessed 6,212 miles). Nutrients affect the fourth greatest amount of assessed lake area (11,074 lake acres, 19%) in the watershed.

In freshwater systems, phosphorus is typically the limiting element on growth and productivity. Excessive levels of nutrients stimulate the growth of algae and aquatic plants, which upon dieback are decomposed by bacteria that consume oxygen on the water floor. This can result in hypoxia (low oxygen conditions), which is detrimental to aquatic life and habitat. Other impacts related to excessive plant and algal growth are discussed below.

6.2.6 Excessive Plant and Algal Growth

Impaired Uses: Aquatic Life, Recreation, Water Supply

Twenty-one percent of lakes (12,630 acres) and an additional 156 miles of streams in the watershed are impacted by excessive plant and algal growth. Excessive plant growth diminishes the recreational value of the waterbody by inhibiting swimming and boating, which in turn impacts local economies that are largely dependent on tourism and recreation. Excessive plant growth can also decrease habitat for fish and spawning beds. Often, the excessive growth is due to the introduction of invasive species that form dense beds on the lakebed and outcompete native species for habitat. In particular, invasives such as Eurasian milfoil and curly leaf pondweed can inhabit various sediments, depths, and light conditions, altering conditions that were previously good conditions for spawning habitat.

Algae is a fundamental component of any aquatic food web, as it produces oxygen, provides food for many organisms, and removes nutrients from the water column. However, when a significant influx of nutrients occurs, algae can grow excessively, creating an unpleasant and unaesthetic atmosphere for swimmers and recreationists. Algal growth can contribute to taste and odor issues and clog intake pipes impacting drinking water sources. Large mats of algal growth block sunlight...
necessary for aquatic plants below the surface, altering habitat and reducing oxygen levels. In the
dieback season, algae falls to the water floor where it is microbially decomposed in a process that
reduces dissolved oxygen levels. Reduced oxygen levels significantly affect organisms in the benthic
zone and cause changes in community dynamics and potential migration of organisms to areas with
more suitable conditions.

Some algal species can produce toxins. Harmful algal blooms (HABs) are kept in check partly by
native nontoxic algae that readily take up excess nutrients from the water column. However, HABs
can proliferate in suitable environmental conditions, which include excess nutrients, increased
precipitation, sufficient sunlight, low-flow conditions, warm temperature, and calm waters (low wind).
Lake dynamics such as native algal species and presence of invasive species contribute to their
presence. Lake associations and organizations such as the Adirondack Watershed Institute are
actively involved in training the public and lake residents on how to identify and report HABs in the
watershed.

6.2.7 Sedimentation

Impaired Use: Aquatic Life, Recreation

Sedimentation affects 13% (812 miles) of assessed stream miles in the St. Lawrence River watershed
(WI/PWL, 2016). Sedimentation occurs when loose sand, clay, silt, and other soil particles enter and
fill catch and flood basins, structures that are important for mitigating flooding and increasing
volumetric capacity during times of increased precipitation and snowmelt. When these structures are
instead filled with excess sediment, their functionality is inhibited.

Sediment deposits in rivers can alter the natural flow of water and reduce water depth, affecting
recreational use and navigation. In addition, sediment deposits are often soft deposits that make
swimming undesirable and murky. Aquatic life is also affected by the transport of sediment and
associated nutrients, as water can become cloudy, preventing fish from finding prey, and sediment
can clog fish gills, lowering growth rates and reducing resistance to disease.

6.2.8 Pathogens

Impaired Use: Water Supply

Pathogens affect 11% of assessed stream miles (661 miles) and 1% of lake acres (727 lake acres)
(WI/PWL, 2016). Swimming in and drinking contaminated waters can make people ill, resulting in
beach closures and an unsafe drinking water source. EPA has developed criteria to protect people
from bacteria and their associated toxins in water bodies.
6.2.9 Road Salt

Impaired Use: Water Supply

The Adirondack Watershed Institute at Paul Smith’s College collected data showing that wells in the Adirondacks were contaminated by road salt at unhealthy levels. Two-thirds (2/3) of the wells tested downslope from state roads contained concentrations of sodium beyond the federally recommended health limit of 20 parts per million (ppm). The natural salinity of water in the Adirondacks is 0.5 ppm. Sodium has been strongly linked with hypertension, a condition that affects 12–30% of Americans. Chloride levels exceeded 250 ppm, the recommended NYSDOH guideline for chloride, in nearly one-third of the 157 wells downslope of state roads. Some wells contained around 1,000 ppm of chloride, a level deemed not potable or drinkable (Virtanen, 2019).

Lakes in watersheds with paved roads have a median sodium concentration four times greater than those in watersheds without paved roads (Kelting, Laxson, and Yerger 2012). Dissolved salts can leach into aquifers and ground water when exposed to rain, snow, and wind. Road salt that enters roadside soils can also displace other cations within the soil, leaching them from the soil for offsite transport and depleting soil fertility. This cation loss from soils demonstrates a flux that may have a significant impact on soil and waterbody biogeochemistry and ecosystem health. Deicing compounds are known to be nontoxic at lower concentrations, but at higher concentrations they can place stress on plants and animals. Ultimately, salt intolerant species are outcompeted by salt-tolerant species, which often include invasive species.

6.3 Potential Sources of Stressors

Lakes and streams in the St. Lawrence River watershed are affected by a combination of local and regional sources of pollution, which presents a challenge for those developing strategies to combat stresses and impairments to waterbodies. These sources include atmospheric deposition of pollutants originating outside the basin (regional), as well as local point and nonpoint sources related to industry, agriculture, hydromodification, municipal infrastructure, development, and commercial and recreational navigation. Point sources refer to discharges that originate from a single, identifiable source such as a pipe or drain from a sewage treatment plant, whereas nonpoint sources represent diffuse combinations of pollutants from a large area, such as stormwater runoff that accumulates contaminants from several sources and then flows into streams.

Figure 5 shows the potential pollutant sources affecting the St. Lawrence River watershed and the magnitude of their impact. Maps 31 and 32 display pollution sources within the St. Lawrence River watershed, such as sites permitted under the National Pollution Discharge Elimination System (NPDES), Superfund, Brownfield, and Environmental Restoration sites, landfills, sites undergoing voluntary cleanup programs, and mines. Regional sources contributing to pollution, nonpoint local...
sources, and local point sources affecting the St. Lawrence River watershed are discussed in the subsections that follow.

Figure 5
Potential Sources of Pollutants and Stressors

![Bar chart showing potential sources of pollutants and stressors]

SOURCE: NYS WI/PWL & 303(d) List, (2016)

6.3.1 Regional Nonpoint Sources

Atmospheric deposition of acid rain and mercury is the primary source of lake pollutants in the watershed, affecting 53% (31,680 lake acres) and 400 miles of streams. Atmospheric deposition is the process by which pollutants in the form of particulates, aerosols, and gases are transported by wind currents and released through precipitation to the earth’s surface. For the St. Lawrence River watershed, the pollutants released through this process are inorganic acids (known as acid rain) and mercury. These pollutants represent historical sources that still affect the system due to the recycling of contaminants in the environment and the atmosphere; they are addressed by federal and state regulations, including the Clean Air Act and Clean Water Act.

6.3.1.1 Acid Rain

Acid rain is formed when sulfur dioxide (SO₂) and nitrogen oxides (NOₓ) combine with moisture in the atmosphere to produce sulfuric and nitric acids. Sulfur dioxide and nitrogen oxides are largely produced through the combustion of fossil fuels and emitted by motor vehicles, power plants, and industries. Higher elevation areas of the St. Lawrence River watershed, including the Adirondacks, are highly susceptible to the impacts of acid rain due to their thin soils, which are largely devoid of
limestone (calcium carbonate). This severely limits the soil’s buffering capacity to counteract the impacts of acid rain, making lakes more vulnerable to its effects. Acid rain has affected 19% of lake acres (11,167 acres) in the watershed.

Federal and state programs including the Clean Air Act (1990), Clean Air Interstate Rule (CAIR), and NYS Acid Deposition Control Act have reduced emissions of nitrogen oxide and sulfur dioxide. Environmental improvements in the region have been documented recently in response to these air pollutant control strategies (Waller 2012).

6.3.1.2 Atmospheric Deposition of Mercury
Mercury is emitted into the air through human activities such as mining and fossil fuel combustion and through natural processes such as volcanic eruptions. It is then deposited via atmospheric deposition onto land and water, where microbial processes can metabolize it into an organic form, methylmercury. Approximately 47% of the St. Lawrence River watershed lake acres are threatened, stressed, or impaired due to mercury found in sediments, waters, and fish. New York State has issued blanket and regional advisories for all waters in the Adirondack region concerning consumption of specific species. The advisories include additional limits on fish consumption for women of child-bearing age and all children.

6.3.1.3 Recreation and Commercial Transport
Aquatic invasive species typically enter waterbodies via transport by boats. The St. Lawrence River watershed is particularly susceptible to aquatic invaders due to international commerce from Eurasia across the Atlantic. Invasive plants and animals in the ballast water enter the watershed through the St. Lawrence Seaway and rivers flowing from the Great Lakes. In addition, recreational boating, particularly in the Adirondack’s region, can hasten the spread of invasive species. The NYSDEC coordinates efforts to combat invasive species through its Partnerships for Regional Invasive Species Management (PRISM).

6.3.2 Nonpoint Local Sources

6.3.2.1 Runoff from Agricultural Areas
Agricultural activities and associated runoff contribute nutrients, sediments, and pesticides to receiving waters, which can have adverse effects on aquatic life and water quality. Twenty six percent (26%) of assessed stream miles (1,604 miles) and 15% of assessed lake acres (8,800 acres) in the watershed are threatened, stressed, or impaired due to agricultural activities (WI/PWL, 2016). There are 2,344 farms in the watershed occupying 620,000 acres of land, and agricultural districts (Map 22) are concentrated primarily in the northern skirt of the basin, which is host to flat plains and rich soils (Maps 14 and 18). Table 4 lists the farmed crops and livestock of the St. Lawrence River watershed and the associated amount of land used for the activity.
The Oswegatchie and Indian subbasins dedicate 14% and 22% of their total area, respectively, to agriculture and have the highest count of surface water segments listed as impaired due to nutrients. The counts include state-assigned pollutants/causes identified as nutrients, organic enrichment/oxygen depletion, algal growth, or noxious aquatic plants. These IDs are associated with excess nutrients and sediment transport via agricultural runoff.

Fifteen percent (15%) of croplands and pasture in the watershed are contiguous to water, and 3% are on hydric soils. The Upper St. Lawrence has the highest percentage of agriculture contiguous to water at 31%. 70% of newly converted agricultural lands (1,100 acres) from 2001-2012 are within hydrologically connected zones, land that is comprised of wet areas with high runoff potential.

Impacts to local waterways can result from poor agricultural management, such as improper manure application on fields, intense cultivation of lands with little riparian buffer, and unrestricted access of livestock to streams. The St. Lawrence River watershed fertilizes 104,254 acres of farmland via manure application (USDA-NASS, 2018). An average of approximately 380 and 390 kg N/ha/year of manure and synthetic nitrogen, respectively, are applied to lands for fertilization purposes (WSIO Indicator Data, 2018).

6.3.2.2 On-Site Water Treatment Systems (Septics)

On-site septic systems threaten, stress, or impair 19% (11,100 acres) of lake acres and 13% (830 miles) of stream miles in the St. Lawrence River waterbasin. Pathogens associated with sewage effluent can impair the use of a waterbody for swimming and recreational purposes. Excess nutrients released in the process can exacerbate algae growth, threatening aquatic life, recreation, and swimming access. Septic systems can be effective in protecting water quality, but regulations regarding inspection or upgrade of these systems is lacking in New York State.

Historically, the St. Lawrence River watershed and the broader Adirondack region have been host to many seasonal visitors from late spring to fall. Recently, there has been a rise in the conversion of lakefront properties from seasonal cottages into year-round residences. If homes fail to upgrade their septic systems to accommodate this transition, they risk sewage effluents reaching nearby waterbodies. Pathogens associated with sewage effluent can impair the use of the waterbody for swimming and recreational purposes. Depending on the age of the septic system, its distance from waterways, and the biogeochemical properties of the leach field, a well-maintained system might also contribute nutrients to nearby waters and thereby exacerbate algae growth threatening aquatic life, recreation, and swimming access.

6.3.2.3 Road Deicing

Deicing compounds are effective and necessary in maintaining safe travel conditions for motorists and travelers throughout the winter months. However, only about 50% of road salt is removed annually via overland flow; the remainder accumulates and moves through soils and groundwater
Studies found a high correlation between road density and sodium and chloride concentrations, pointing to road salt as the primary source of salt loadings to lakes (Kelting, Laxson, & Yerger 2012). This same study found that roads maintained following NYSDOT deicing protocols (state roads) are the greatest contributors to salinization of lakes in the Adirondack Park. In addition, coarse texture glacial till and soils of granitic origin have high infiltration rates and low retention within the soil matrix, contributing to the rapid and increased migration of salts to aquifers and groundwater. The storage of deicing compounds is currently unregulated, and many municipalities have inadequate storage facilities, leaving deicing compounds exposed to the elements and increasing the potential for offsite transport.

6.3.2.4 Hydromodification

Hydromodification is the alteration of the natural flow of water through a landscape that results from changes in land cover or channel modification. Road and streambank erosion, shoreline erosion, development, and the building of dams are examples of hydromodification. Seven percent (7%) of assessed stream miles in the St. Lawrence River watershed are impacted by hydromodification (WI/PWL, 2016).

Streambank and shoreline erosion. Sediment carried by rivers and streams draining large watersheds is primarily attributed to bank and channel erosion. When a stream is straightened or widened, whether via human manipulation or fast-flowing waters, its banks and shoreline can erode as the stream reestablishes a stable size and pattern. Vegetation removal and land use changes can contribute to more erosion. As sediments are released downstream, they can potentially settle in low-flow areas, altering stream flow and filling in areas that previously mitigated flooding. Banks and shorelines that are unvegetated, high sloped, and experience large flow rates during times of increased precipitation are more susceptible to erosion.

Dams. Dams can alter hydrology, surface water quality, and aquatic habitat in the stream or river where they are located. There are 190 dams in the St. Lawrence River Watershed, shown on Map 29. In some cases, a dam wall can block fish migrations or separate spawning habitats from rearing habitats. Dams trap sediment and inhibit its transport downstream, altering both upstream and downstream habitat. Disrupting water flow and sediment transport by changing the quantity and timing of water flow impacts the ecological web of a river system. For example, increased flow conditions are an important environmental queue to initiate the salmon run of Chinook salmon in the Salmon River. In recreational reservoirs impounded by dams, sedimentation is cited as a nuisance for swimmers and lakeshore residents, who experience difficulty navigating due to buildup of sediment and increased plant growth.

Development. Development, or “back-country sprawl,” is an emerging threat to aquatic ecosystems and water quality in the St. Lawrence River watershed. New development brings new roads,
driveways, power and water lines, leach fields, invasive species, and other disruptions to the natural hydrography of the landscape. Development also increases impervious surfaces in the watershed that can disrupt the natural flow of water. Studies have shown that water quality can be harmed when as little as 2% of a watershed is converted from natural vegetation to artificial hard surfaces (Adirondack Council, 2008).

6.3.3 **Point Sources**

The Clean Water Act regulates point sources that discharge pollutants into a waterbody by requiring the discharger to have a National Pollutant Discharge Elimination Systems (NPDES) permit. The permit identifies the pollutant(s) of concern, the discharge allowance, and monitoring and reporting requirements. This system protects water quality by ensuring that the state’s water standards are met and specifying acceptable levels of a pollutant, or pollutant indicator, in a discharge. Major NPDES sites in the St. Lawrence River watershed (Map 31) include publicly owned treatment works (39), combined sewer overflows (33), municipal separate storm sewer systems (2), stormwater constructs (8), industrial wastewater discharges (56), and concentrated animal feeding operations (72).

6.3.3.1 **Publicly Owned Treatment Works**

Publicly owned treatment works (POTWs) are tasked with collecting municipal wastewater and treating it to meet discharge requirements before the effluent can be released into adjacent waters. Wastewater can contain pathogens, metals, suspended solids, residual chlorine, and trace contaminants that can threaten drinking water and recreational activity. Wastewater treatment plants (WWTPs) are cited as the suspected source of pollutants of 13% (3,130 lake acres) of assessed lake acres and 6% (410 miles) of assessed streams (WI/PWL, 2016). **Table 12** lists POTWs within the St. Lawrence River watershed.

The Clean Water Act, passed in 1972, provided funding to support the construction and upgrade of wastewater treatment facilities, which led to a significant improvement in water quality. However, funding for maintaining and upgrading these systems has been greatly reduced, which coincides with the end of these systems’ 30- to 40-year design lives. Many sewage treatment systems in small towns and villages are aging, inadequate, or operating beyond their capacity.

Table 12

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>NPDES ID</th>
<th>Receiving Waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>041503010102 Clayton (V) STP</td>
<td>NY0027545</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>Orleans/Alexandria Joint WWTP</td>
<td>NY0258059</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>Thousand Island Park STP</td>
<td>NY0030686</td>
<td></td>
</tr>
<tr>
<td>Alexandria Bay WWTP</td>
<td>NY0022501</td>
<td>St. Lawrence River</td>
</tr>
</tbody>
</table>

The Clean Water Act, passed in 1972, provided funding to support the construction and upgrade of wastewater treatment facilities, which led to a significant improvement in water quality. However, funding for maintaining and upgrading these systems has been greatly reduced, which coincides with the end of these systems’ 30- to 40-year design lives. Many sewage treatment systems in small towns and villages are aging, inadequate, or operating beyond their capacity.
<table>
<thead>
<tr>
<th>HUC8</th>
<th>Facility Name</th>
<th>NPDES ID</th>
<th>Receiving Waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>041503010107</td>
<td>Us Coast Property At Wellesley Island</td>
<td>NY0022284</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>041503010202</td>
<td>Morristown (V) WWTF</td>
<td>NY0206997</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>041503010203</td>
<td>Ogdensburg Secondary WWTP</td>
<td>NY0029831</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>041503010202</td>
<td>Waddington (V) WWTF</td>
<td>NY0030180</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>041503010203</td>
<td>Lisbon STF</td>
<td>NY0257559</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>041503020102</td>
<td>Fine - T Wanakena Sewer District</td>
<td>NY0034533</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>041503020604</td>
<td>Edwards (V) WWTP</td>
<td>NY0023809</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>041503020802</td>
<td>Gouverneur (V) WWTF</td>
<td>NY0020117</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>041503020902</td>
<td>Dekalb Junction STP</td>
<td>NY0034762</td>
<td>Gulf Creek</td>
</tr>
<tr>
<td>041503020904</td>
<td>Rensselaer Falls WWTP</td>
<td>NY0257613</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>041503021002</td>
<td>Heuvelton (V) WPCP</td>
<td>NY0027146</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>041503030205</td>
<td>Antwerp (V) WWTP</td>
<td>NY0235890</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503030301</td>
<td>Evans Mills (V) WWTP</td>
<td>NY0024660</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503030303</td>
<td>Philadelphia (V) WWTP</td>
<td>NY0033022</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503030401</td>
<td>Theresa (V) WWTP</td>
<td>NY0207004</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503030501</td>
<td>Redwood SD</td>
<td>NY0215911</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503030505</td>
<td>Hammond (V) STP</td>
<td>NY0033561</td>
<td>Indian River</td>
</tr>
<tr>
<td>041503040402</td>
<td>Hermon (V) WWTP</td>
<td>NY0257532</td>
<td>Elm Creek</td>
</tr>
<tr>
<td>041503040404</td>
<td>Canton (V) WWTP</td>
<td>NY0236586</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040501</td>
<td>Madrid WPCP</td>
<td>NY0024635</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040502</td>
<td>Massena (V) WWTP</td>
<td>NY0031194</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503050409</td>
<td>Tupper Lake (V) WPCP</td>
<td>NY0029939</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050604</td>
<td>Colton STP</td>
<td>NY0022012</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050703</td>
<td>Norwood (T) SD#1</td>
<td>NY0023604</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050703</td>
<td>Norwood (V) WWTP</td>
<td>NY0021369</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050703</td>
<td>Potsdam (V) WPCP</td>
<td>NY0020818</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050703</td>
<td>Potsdam Sewer District #1 STP</td>
<td>NY0023337</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503060303</td>
<td>N. Lawrence & Nicholville STP</td>
<td>NY0110116</td>
<td>Saint Regis River</td>
</tr>
<tr>
<td>041503060405</td>
<td>St Regis Falls WWTP</td>
<td>NY0255858</td>
<td>Saint Regis River</td>
</tr>
<tr>
<td>041503060408</td>
<td>Brasher Falls SD#1 STP</td>
<td>NY0030732</td>
<td>Saint Regis River</td>
</tr>
<tr>
<td>041503070302</td>
<td>Malone (V) WWTP</td>
<td>NY0030376</td>
<td>Salmon River</td>
</tr>
<tr>
<td>041503070306</td>
<td>High Street WWTP</td>
<td>NY0027863</td>
<td>Salmon River</td>
</tr>
</tbody>
</table>
Stormwater Collection Systems

Stormwater runoff is generated when water from rain and snowmelt events flows over land or impervious surfaces and does not seep into the ground. If runoff is not captured or treated, it can accumulate and transport nutrients, chemicals, sediment, and other pollutants that adversely affect water quality in receiving waters. Urban and developed areas with a higher concentration of impervious surfaces are more vulnerable to the impacts of stormwater runoff. Stormwater impacts seven percent of assessed streams (410 miles) and one percent of assessed lakes (634 acres) in the St. Lawrence River watershed (WI/PWL, 2016). The CWA regulates combined sewer overflows (CSOs), municipal separate storm sewer systems (MS4s), industrial facilities, and construction sites to prevent and monitor discharges of pollutants in stormwater runoff.

Combined Sewer Overflows. Combined sewer systems collect water from domestic sewers and wastewater, industrial wastewater, and stormwater runoff. These systems are designed with relief points to mitigate periods of high flow. A CSO occurs when stormwater runoff from precipitation or snowmelt exceeds the sewer’s capacity and excess waters are discharged directly to its receiving waterbody through the built-in relief points. CSO discharges may contain mixtures of domestic sewage, high levels of suspended solids, toxic chemicals, floatable material, and other pollutants. In the event of an overflow, receiving waterbodies may be hazardous for human and animal health and have significant water quality impacts such as bacterial contamination, algae growth, and reduced oxygen levels in the water. As permittees, municipalities are required to comply with long-term control plans that present mechanisms to reduce the frequency and volume of CSO discharges. Popular methods include separating stormwater and sewer lines, expanding wastewater treatment capacity, creating retention basins to hold overflow during storm events, and using green infrastructure to reduce stormwater flows.

There are 33 permitted CSOs in the St. Lawrence River watershed (**Table 13**). CSOs are concentrated in the City of Ogdensburg, and Villages of Massena, Clayton, Tupper Lake, Gouverneur, and Potsdam. The highest number of CSOs exist within the City of Ogdensburg, with 17 overflows monitored and owned by the City of Ogdensburg WWTP. The Village of Massena monitors ten CSOs operated by the Massena WWTP. The NYSDEC website presents a [mapping tool](https://www.dec.ny.gov) showing the locations of CSOs within the state.
Table 13
Permitted CSOs

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Receiving Waterbody</th>
<th>Permit ID</th>
<th>Facility Owner</th>
<th>Operating CSOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasse</td>
<td>041503040502</td>
<td>Grasse River</td>
<td>NY0031194</td>
<td>Village of Massena, WWTP</td>
<td>5</td>
</tr>
<tr>
<td>Raquette</td>
<td>041503050706</td>
<td>Raquette River</td>
<td>NY0031194</td>
<td>Village of Massena, WWTP</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>041503050409</td>
<td>Raquette Pond</td>
<td>NY0029939</td>
<td>Village of Tupper Lake, WPCP</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>041503050703</td>
<td>Raquette River</td>
<td>NY0020818</td>
<td>Village of Potsdam, WPCP</td>
<td>1</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020802</td>
<td>Oswegatchie River</td>
<td>NY0020117</td>
<td>Village of Gouverneur, WWTF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>041503021003</td>
<td>Oswegatchie River</td>
<td>NY0029831</td>
<td>City of Ogdensburg, WWTP</td>
<td>10</td>
</tr>
<tr>
<td>Upper St.</td>
<td>041503010202</td>
<td>St. Lawrence River</td>
<td>NY0029831</td>
<td>City of Ogdensburg, WWTP</td>
<td>7</td>
</tr>
<tr>
<td>Lawrence</td>
<td>041503010102</td>
<td>St. Lawrence River</td>
<td>NY0027545</td>
<td>Village of Clayton, STP</td>
<td>2</td>
</tr>
</tbody>
</table>

SOURCE: CSO Outfalls Google Earth Map, NYSDEC; Enforcement and Compliance History Online (ECHO), USEPA.

Municipal Separate Storm Sewer Systems. The St. Lawrence River watershed hosts two MS4s, serving areas within the Indian subwatershed at Fort Drum and an adjacent town, Leray (Table 14). These systems utilize a collection of structures, including retention basins, ditches, roadside inlets, and underground pipes, to gather stormwater from flooded areas and discharge it into local streams and rivers without treatment. Many rural developments use similar stormwater management structures, but only communities that the US Census Bureau classifies as “urbanized areas” (based on population density) are required to become part of the MS4 program and retain a permit. Urbanized areas contain more impervious surfaces and development that leads to increased stormwater runoff. In conjunction with retaining an NPDES permit for these systems, communities are required to develop a stormwater management plan.

Table 14
Permitted MS4s

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Receiving Waterbody</th>
<th>Permit ID</th>
<th>Facility Name</th>
<th>Operating MS4s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian</td>
<td>041503030301</td>
<td>West Creek</td>
<td>NYR20A556</td>
<td>Fort Drum</td>
<td>Base-wide, Fort Drum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NYR20A557</td>
<td>Leray</td>
<td>Town-wide, Evan Mills</td>
</tr>
</tbody>
</table>

SOURCE: Enforcement and Compliance History Online (ECHO), USEPA.
Industrial Wastewater and Stormwater. Industrial wastewater may contain pollutants at levels that have adverse impacts on water quality. Effluents may contain components that interfere with POTWs that receive their wastewater. Industry and construction are often exposed to the weather, where runoff from rainfall or snowmelt can potentially transport pollutants to stormwater catchments or adjacent waterbodies. The NPDES permitting program establishes discharge limits and conditions for industrial sources with specific standards relevant to the type of industrial activity. Relevant subjects to regulation in the St. Lawrence watershed subject include sand and gravel storage sites, mines, manufacturing and solid waste management facilities. Table 15 lists industrial facilities subject to the NPDES permitting system.

Table 15
Industrial Wastewater and Stormwater Sites Permitted under NPDES

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Facility Name</th>
<th>NPDES ID</th>
<th>Receiving Waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper St. Lawrence</td>
<td>041503010101</td>
<td>Clayton WWTP</td>
<td>NYR00E598</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>French Creek Marina</td>
<td>NYR00A10F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010102</td>
<td>Northern Marine Inc</td>
<td>NYR00A494</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td></td>
<td>041503010106</td>
<td>Stout's Ready Mix Ltd.</td>
<td>NYR00F161</td>
<td>Chippewa Creek</td>
</tr>
<tr>
<td></td>
<td>041503010107</td>
<td>Acco Brands USA LLC</td>
<td>NYR00E721</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>Upper St. Lawrence</td>
<td>041503010201</td>
<td>Acco Brands</td>
<td>NYR00G008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maxam Us, LLC</td>
<td>NYR00F749</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ogdensburg Distribution And Manufacturing Facility</td>
<td>NYR00F496</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010202</td>
<td>Port of Ogdensburg</td>
<td>NYR00A860</td>
<td>St. Lawrence River</td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020503</td>
<td>Viking Cives Inc USA</td>
<td>NYR00B403</td>
<td>West Branch Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td>041503020702</td>
<td>Bestway of New York</td>
<td>NYR00F489</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020801</td>
<td>Gouverneur Division, #1 Mill And #2 Mine</td>
<td>NYR00A595</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gouverneur Division, #3 Mill</td>
<td>NYR00A894</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020802</td>
<td>Cargill Feed and Nutrition Gouverneur</td>
<td>NYR00C212</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cives Steel Company</td>
<td>NYR00B413</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dunn Paper - Natural Dam Inc</td>
<td>NYR00F629</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gouverneur (V) WWTF</td>
<td>NYR00E780</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td>041503020804</td>
<td>Seavey Road Quarry</td>
<td>NYR00B614</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td>041503020902</td>
<td>Stiles Used Auto Parts</td>
<td>NYR00G028</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Losurdo Foods Inc</td>
<td>NYR00D375</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sunopta Aseptic Inc</td>
<td>NYR00E518</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Facility Name</td>
<td>NPDES ID</td>
<td>Receiving Waterbody</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>041503021003</td>
<td></td>
<td>Ogdensburg International Airport</td>
<td>NYR00A859</td>
<td></td>
</tr>
<tr>
<td>041503030102</td>
<td></td>
<td>Gouverneur Division, #4 Mine</td>
<td>NYR00B205</td>
<td>Clark Creek</td>
</tr>
<tr>
<td>041503030301</td>
<td></td>
<td>Building 2084 - Jp-8 Storage Tanks</td>
<td>NYR00F375</td>
<td>Black River</td>
</tr>
<tr>
<td>041503030301</td>
<td></td>
<td>Building 21510 Central Vehicle Wash Facility</td>
<td>NYR00F376</td>
<td>Black River</td>
</tr>
<tr>
<td>041503040303</td>
<td></td>
<td>Poulin Grain Inc</td>
<td>NYR00F610</td>
<td>Tracy Brook</td>
</tr>
<tr>
<td>041503040404</td>
<td></td>
<td>Canton Wastewater Plant</td>
<td>NYR00E591</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040406</td>
<td></td>
<td>Canton Usarc</td>
<td>NYR00C438</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040502</td>
<td></td>
<td>St Lawrence County Manufacturing & Properties LLC</td>
<td>NYR00A798</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040502</td>
<td></td>
<td>Witherbee And Whalen Inc</td>
<td>NYR00B829</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040502</td>
<td></td>
<td>Massena (V) WWTP</td>
<td>NYR00E618</td>
<td>Grasse River</td>
</tr>
<tr>
<td>041503040502</td>
<td></td>
<td>Massena Energy Facility</td>
<td>NYR00E893</td>
<td>Robinson Creek</td>
</tr>
<tr>
<td>041503050603</td>
<td></td>
<td>UPS-Potsdam</td>
<td>NYR00C046</td>
<td>Plum Brook</td>
</tr>
<tr>
<td>041503050604</td>
<td></td>
<td>Potsdam Quarry And Concrete</td>
<td>NYR00B954</td>
<td>Stafford Brook</td>
</tr>
<tr>
<td>041503050604</td>
<td></td>
<td>Waste-Stream Inc</td>
<td>NYR00D032</td>
<td>Stafford Brook</td>
</tr>
<tr>
<td>041503050703</td>
<td></td>
<td>Knapps Station Facility</td>
<td>NYR00B231</td>
<td></td>
</tr>
<tr>
<td>041503050703</td>
<td></td>
<td>Norwood Facility</td>
<td>NYR00B658</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050703</td>
<td></td>
<td>Village Of Potsdam WWP</td>
<td>NYR00E695</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050704</td>
<td></td>
<td>Potters Industries, LLC</td>
<td>NYR00D568</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503050706</td>
<td></td>
<td>Massena Ready Mix Plant</td>
<td>NYR00G151</td>
<td></td>
</tr>
<tr>
<td>041503050706</td>
<td></td>
<td>Massena Terminal Railroad Company</td>
<td>NYR00D761</td>
<td>Raquette River</td>
</tr>
<tr>
<td>041503060302</td>
<td></td>
<td>Malone Quarry</td>
<td>NYR00F957</td>
<td>Farrington Brook</td>
</tr>
<tr>
<td>041503060302</td>
<td></td>
<td>Malone Ready Mix Plant</td>
<td>NYR00G126</td>
<td></td>
</tr>
<tr>
<td>041503060302</td>
<td></td>
<td>Westville Facility</td>
<td>NYR00B660</td>
<td>Salmon River</td>
</tr>
<tr>
<td>041503060303</td>
<td></td>
<td>Malone Distribution Warehouse</td>
<td>NYR00G146</td>
<td></td>
</tr>
<tr>
<td>041503070204</td>
<td></td>
<td>Wi Ore Sand</td>
<td>NYR00F865</td>
<td></td>
</tr>
<tr>
<td>041503080102</td>
<td></td>
<td>Lyon Mountain Convenience Sta</td>
<td>NYR00E340</td>
<td>Separator Brook</td>
</tr>
<tr>
<td>041503080201</td>
<td></td>
<td>McAdam Plant Chateaugay</td>
<td>NYR00D497</td>
<td>Marble River</td>
</tr>
<tr>
<td>041503080202</td>
<td></td>
<td>Clinton Quarry</td>
<td>NYR00F955</td>
<td></td>
</tr>
<tr>
<td>041503080203</td>
<td></td>
<td>Grasslands</td>
<td>NYR00D031</td>
<td></td>
</tr>
<tr>
<td>041503080301</td>
<td></td>
<td>Waste Stream Management Transfer Station</td>
<td>NYR00D595</td>
<td></td>
</tr>
<tr>
<td>041503080303</td>
<td></td>
<td>County Of Franklin Solid Waste Management Authority</td>
<td>NYR00D523</td>
<td></td>
</tr>
<tr>
<td>041503080406</td>
<td></td>
<td>Mooers Transfer Station</td>
<td>NYR00D597</td>
<td>English River</td>
</tr>
<tr>
<td>041503080501</td>
<td></td>
<td>Churubusco Convenience Station</td>
<td>NYR00E548</td>
<td>Hinchinbrook Brook</td>
</tr>
</tbody>
</table>

SOURCE: Enforcement and Compliance History Online (ECHO), USEPA.
6.3.3.3 *Concentrated Animal Feeding Operations*
Animal feeding operations and their associated manure and wastewater contribute nutrients, pathogens, organic matter, hormones, and antibiotics to the environment. Agricultural animal feeding operations are defined by the following conditions:

- Animals have been, are, or will be stabled or confined and fed or maintained for a total of 45 days or more in any 12-month period, and
- Crops, vegetation, forage growth, or post-harvest residues are not sustained in the normal growing season over any portion of the lot or facility.

Animal feeding operations that meet the regulatory definition of a concentrated animal feeding operation (CAFO) are considered point sources, as defined by the CWA [Section 502(14)] and regulated under the NPDES permitting program. CAFOs are classified by the type and number of animals they contain, and the way they discharge waste into a waterbody. A CAFO is defined as a “large” when 1,000 or more head cattle are present (including heifers, steers, bulls, and cow/calf pairs). A “medium” CAFO has 300-999 head and meets one of the criteria below:

- Pollutants are discharged into waters through a manmade ditch, flushing system, or other similar manmade device, or
- Pollutants are discharged directly into waters that originate outside of and pass over, across, or through the facility or otherwise come into direct contact with the animals confined in the operation (122.23(b)(2)).

“Small” CAFOs—those with less than 300 head—are designated CAFOs on a case by case basis, depending on factors such as size and amount of manure reaching waters, location relative to waters, slope, vegetation, rainfall, and other factors that affect the likelihood and frequency of discharge to waters.

There are 69 CAFOs permitted under the NPDES program in the St. Lawrence River watershed (Table 16). CAFOs with effective coverage under the general permit also submit CAFO-specific nutrient management plans, which provide information on production and land application areas, best management practices, an implementation schedule, and an emergency action plan. These plans and permits are essential to reducing nutrient and pathogen transport to surface and groundwaters from agricultural runoff and activities.

Table 16
CAFOs Permitted under NPDES

<table>
<thead>
<tr>
<th>HUC8</th>
<th>HUC12</th>
<th>Facility Name</th>
<th>NPDES ID</th>
<th>Receiving Waterbody</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUC-8</td>
<td>HUC-12</td>
<td>Facility Name</td>
<td>NPDES ID</td>
<td>Receiving Waterbody</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Facility Name</td>
<td>NPDES ID</td>
<td>Receiving Waterbody</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Upper St. Lawrence</td>
<td>041503010102</td>
<td>Bourcy Farm Property</td>
<td>NYA001542</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010106</td>
<td>Pitcher Farms</td>
<td>NYA000579</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010107</td>
<td>Beamish Farm</td>
<td>NYA000547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010202</td>
<td>Woodcrest Dairy LLC</td>
<td>NYA000561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010203</td>
<td>Five Mile Farms</td>
<td>NYA000071</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flack Farms</td>
<td>NYA000628</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harvest Dairy Farm</td>
<td>NYA000267</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keystone Dairy</td>
<td>NYA001385</td>
<td>Squaw Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lisbon Centre Farms, LLC</td>
<td>NYA000565</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503010204</td>
<td>Brandy Brook Haven Farms, LLC</td>
<td>NYA001374</td>
<td>Brandy Brook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brandy View Farms</td>
<td>NYA000615</td>
<td>Brandy Brook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ceda-Meadow Farm</td>
<td>NYA000448</td>
<td></td>
</tr>
<tr>
<td>Oswegatchie</td>
<td>041503020902</td>
<td>Mclean Farms</td>
<td>NYA001432</td>
<td>Line Creek</td>
</tr>
<tr>
<td></td>
<td>041503020903</td>
<td>Martin Farm</td>
<td>NYA000076</td>
<td>Merrill Creek</td>
</tr>
<tr>
<td></td>
<td>041503020904</td>
<td>Kelly Farm</td>
<td>NYA000573</td>
<td>Beaver Creek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rainbow Acres</td>
<td>NYA001386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503021002</td>
<td>Chambers Farms LLC</td>
<td>NYA000013</td>
<td>Oswegatchie River</td>
</tr>
<tr>
<td></td>
<td>041503021003</td>
<td>Bruce Nichols</td>
<td>NYA000569</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fishel Farms LLC</td>
<td>NYA000498</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Royal-J-Acres LLC</td>
<td>NYA000090</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virgil Valley Farms</td>
<td>NYA000480</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pominvilles Farm</td>
<td>NYA001556</td>
<td>Indian River</td>
</tr>
<tr>
<td>Indian</td>
<td>041503030303</td>
<td>Leuze Farms</td>
<td>NYA000354</td>
<td>Indian River</td>
</tr>
<tr>
<td>HUC8</td>
<td>HUC12</td>
<td>Facility Name</td>
<td>NPDES ID</td>
<td>Receiving Waterbody</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>041503030504</td>
<td>Thompson Farm Property</td>
<td>NYA001538</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503030505</td>
<td>White Acre Farms</td>
<td>NYA000560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503040401</td>
<td>Gebarten Acres</td>
<td>NYA001325</td>
<td></td>
</tr>
<tr>
<td>Grasse</td>
<td>041503040402</td>
<td>Gotham Family Farm, LLC</td>
<td>NYA000162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503040404</td>
<td>Greenwood Dairy Farm, LLC</td>
<td>NYA000067</td>
<td>Nettle Creek</td>
</tr>
<tr>
<td></td>
<td>041503040406</td>
<td>Jordan Farms</td>
<td>NYA000206</td>
<td>Grass River</td>
</tr>
<tr>
<td></td>
<td>041503040406</td>
<td>Kingston Brothers Farm</td>
<td>NYA000515</td>
<td>Grass River</td>
</tr>
<tr>
<td></td>
<td>041503040501</td>
<td>Mapleview Dairy LLC</td>
<td>NYA000059</td>
<td></td>
</tr>
<tr>
<td>Raquette</td>
<td>041503060302</td>
<td>Durant Farms</td>
<td>NYA000581</td>
<td>Allen Brook</td>
</tr>
<tr>
<td></td>
<td>041503060305</td>
<td>Tri Oak Lea Farm</td>
<td>NYA001519</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503060406</td>
<td>Norco Farms</td>
<td>NYA000068</td>
<td>Hopkinton Brook</td>
</tr>
<tr>
<td>St. Regis</td>
<td>041503070203</td>
<td>Jimali Holsteins</td>
<td>NYA001320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503070302</td>
<td>A. Miller</td>
<td>NYA001431</td>
<td></td>
</tr>
<tr>
<td>Salmon</td>
<td>041503070303</td>
<td>Carsada Farms</td>
<td>NYA001292</td>
<td>East Branch Deer Creek</td>
</tr>
<tr>
<td></td>
<td>041503070303</td>
<td>Clearview Dairy</td>
<td>NYA001355</td>
<td></td>
</tr>
<tr>
<td></td>
<td>041503070303</td>
<td>Ellsworth Farms</td>
<td>NYA001339</td>
<td></td>
</tr>
</tbody>
</table>
SOURCE: Enforcement and Compliance History Online (ECHO), USEPA

Legacy Industrial Waste Disposal Practices

The St. Lawrence River watershed has been affected by industrial production and improper waste disposal practices that resulted in the contamination of sediments and waterways. The Massena area in northeastern St. Lawrence County, once an industrial powerhouse, is now dealing with the pollution left behind from several decades of industrial manufacturing. Priority organics (PAHs, PCBs) and pesticides have contaminated 875 stream miles (14% of assessed miles), and 700 miles are suspected to be contaminated due to improper industrial waste disposal.

Alcoa Inc., an aluminum manufacturing facility, has operated in Massena since 1903. The facility released hazardous wastes from its production and fabrication activities onto facility property and into the Grasse River via industrial outfalls from the 1950s to the 1970s. PCBs were among the primary organic contaminants in the waste, but wastes also included aluminum, furans, and PAHs. In 1989, the USEPA declared it a Superfund Site and issued an Administrative Order to investigate the extent of contamination. Sediments in the river system immediately surrounding the facility and those up to 7 miles downstream were found to have been contaminated, with fish also containing high levels of PCB contamination. In 1990, the NYSDOH advised the public to not eat any fish from the mouth of the Grasse River to the Massena Power Canal. From 1995 to 2001, Alcoa completed some dredging and capping of the contaminated site, but a severe ice jam event in the Grasse River damaged a portion of the capping, so subsequent monitoring and remediation is needed. In 2013, a cleanup plan was released to the public, and remediation is ongoing.
Reynolds Metals operates Alcoa East, a 1,600-acre facility on the St. Lawrence River that is now owned by Alcoa. Industrial wastes contaminated with PCBs and PAHs were discharged into river through four permitted outfalls. The USEPA issued a Unilateral Administrative Order ordering investigation and cleanup of the site, and Alcoa worked cooperatively with the USEPA to remediate the site by dredging the river adjacent to the facility. This remediation has been completed.

In 1984, another 270-acre site in Massena was added to the Superfund National Priorities List. General Motors produced aluminum cylinder heads at this plant from 1959 to 2009, and onsite disposal of industrial wastes led to PCB contamination of the groundwater, on- and off-site soils, and sediment in the St. Lawrence and Raquette Rivers, Turtle Cove, and Turtle Creek. This site is still undergoing cleanup under the federal Superfund program to address onsite and waterway contamination.

6.4 Sensitive Areas

The St. Lawrence River watershed encompasses many sensitive areas, including lakes and streams, steep slopes, wetlands and hydric soils, floodplains, and primary aquifers (Map 33). These areas provide several ecosystem services. For example, wetlands provide a buffer against flooding, woodlands and natural land cover of riparian areas buffer waterbodies from runoff, and vegetation stabilizes steep slopes prone to erosion. The St. Lawrence River watershed has a large area within the Adirondack region consisting of slopes greater than or equal to 15%, which classifies these areas as having a high risk of soil erosion. The plains of the northern region traversing the St. Lawrence River shoreline are dominated by emergent and forested wetlands, which are threatened by agricultural practices and land use change.

New York State and the New York Natural Heritage Program are working to protect select areas that are more vulnerable to ecological degradation and poor management. As a result, some areas are designated “critical environmental areas” or are managed by the NYNHP to enhance community resiliency and ecological integrity through restoration and protection.
7 Emerging Issues

In addition to the previously mentioned stressors, emerging issues affecting the St. Lawrence River watershed are climate change and water-level management. Solutions to these problems require knowledge and a collaborative effort beyond the watershed boundaries. In addressing these issues, it is essential to take an ecosystem-based approach, to recognize the importance of intermunicipal collaboration for implementing successful strategies, and to realize that watershed management planning is a continual process that involves stakeholder participation and long-term, complex solutions.

7.1 Floodplain and Water-Level Management

Many communities in the St. Lawrence River watershed are suffering and recovering from extreme flooding. Water levels of the St. Lawrence River change in response to the supply it receives from Lake Ontario, and the outflow adjusts in response to the flow through the Moses-Saunders and Long Sault Dams. A change in outflow of 323 cubic meters per second (m³/s) for one week will cause a change of 1 cm in the Lake Ontario level, whereas the St. Lawrence River will experience a 16 cm variation (IJC, 2014). Small releases can increase Lake Ontario levels and potentially be hazardous for river navigation, threatening ship groundings. Large releases may reduce Lake Ontario flooding but increase river flooding, demonstrating the complexity and difficulty of managing this water system.

Widespread and record-setting precipitation in 2017 and 2019 brought significant water volumes and flooding to both Lake Ontario and the St. Lawrence River, affecting residents, business owners, and municipalities. Impacts from the flooding affect local economies due to expensive remediation and infrastructure repairs, decreased tourism, and damage to residential and business properties. Rapid runoff resulting from increased precipitation is expected to affect sediment and contaminant transport, impairing waterways and eroding shorelines. Alterations in flow patterns and consequential sedimentation of low-flow areas can decrease fish spawning and egg viability, biodiversity, and habitat. Adaptation strategies to flooding should focus on projects that contribute to the resiliency of shorelines and infrastructure to high volumes of water. These should involve infrastructure that enhances natural hydrologic processes (soil infiltration, groundwater recharge, evaporation) and slows the movement of water instead of rapidly conveying it to waterbodies.

7.2 Climate Change

Climate change is influencing the severity of numerous water quality issues. Water resources are influenced by climate factors, such as temperature, amount and duration of snowfall and snow cover, rainfall, and evaporation. Climate change has the potential to shrink water supplies and degrade the quality of remaining supplies. Warmer weather and more variable precipitation complicate efforts to manage lakes and watersheds.
Changes in seasonal precipitation and frequency have been noted in recent years, with increased precipitation in the form of heavy rain events in the spring and fall, and periods of low precipitation and drought during the summer months. The northeastern United States has experienced an increase in heavy rains that create hazardous runoff flows and increase vulnerability to flooding. With higher temperatures, as well as alterations in precipitation and wind patterns and associated nutrient-dense runoff, algal blooms are expected to occur more frequently. A warming climate threatens fish populations by decreasing the levels of dissolved oxygen, increasing water temperature and turbidity, and altering water flow. As these impacts are not due to local or point sources, adaptation strategies should incorporate resiliency and “smart growth” projects to moderate stressed waterbodies and prepare for the future.
8 Data Gaps

This watershed characterization process uses available data to offer a snapshot of watershed health at a moment in time, laying a foundation that will allow us to evaluate progress and changes in response to implementation strategies. However, several data gaps exist that limit the extent of the characterization:

- Only 48% of stream miles and 43% of lake acres have been assessed for water quality, meaning that nearly 50% of the waters within the watershed were not characterized or monitored for impairment. Of the assessed waters, 38% of stream miles and 80% of lake acres were found to be threatened, stressed, or impaired. Given that high percentage, it is likely that many of the unassessed waters are also impacted.

- The North Country of New York State is largely unmapped by FEMA for identification of high-risk flood areas. Consequently, parameters such as slope, soil type, storage capacity, and incoming flow were used to evaluate which areas are more vulnerable to flooding.

- Citizen science is a major source of data in the identification of invasive species, which can introduce biases related to the frequency of site visitation to sites and can result in imbalances in the availability of data from one area to another.

- The land use characterization did not include an analysis of zoning codes, due to the expense of obtaining this data across so many municipalities. However, since much of the land is agricultural and generally lacks intense development, this information may not be as essential. We also know that water quality impairments are largely due to regional contamination of mercury and acid deposition, as well as nonpoint sources throughout the watershed.

Although some of the information in this watershed characterization is imperfect or incomplete, the implementation of the watershed revitalization plan can proceed in a dynamic and adaptable way as more and improved information becomes available.
9 References

Appendix A
Local Laws and Programs Affecting Water Quality