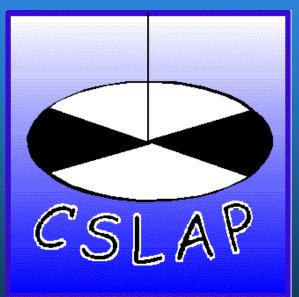

CSLAP: What is the Data Used For?

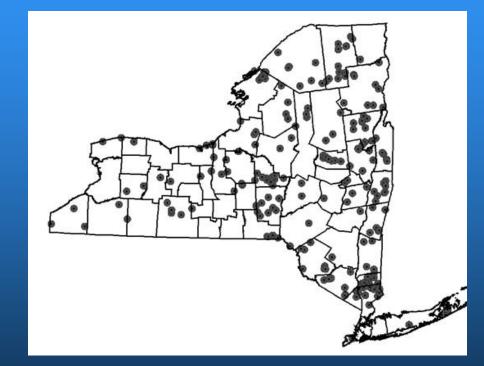


Nancy Mueller, Manager New York State Federation of Lake Associations (800)796-3652 fola@nysfola.org

Citizens Statewide Lake Assessment Program (CSLAP)

Established in 1985: NYS Environmental Conservation Law

§ 17-0305. Establishment of a program to monitor water quality by private citizens under the direction of the department.


Citizens Statewide Lake Assessment Program (CSLAP)

1. The commissioner shall establish a program which shall be known as the "citizens statewide lake assessment program". The purpose of this program is to establish a network of volunteers belonging to lake associations throughout the state to monitor the condition of their respective lakes under the guidance and direction of the department.

What Volunteers Can Do!

1986-2018 • >70,000 samples • >2500 volunteers >270 lakes across the state

What Data is Collected?

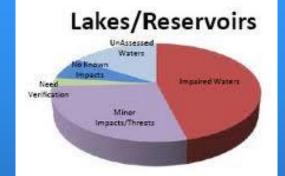
- Air & Water Temperature
- Lake Level (new)
- Secchi Transparency
- pH & Conductivity
- Nutrients
- Color
- Chlorophyll a and algae (2011-2018 including toxins)

CSLAP – Standard Parameters

- Water Temperature (field)
- Transparency (field)
- Conductivity (lab)
- pH (lab) and Ca (lab)
- (True) Color (field filter-lab)
- TP (lab), new! TDP
- Nitrogen (Total, ammonia, and NOx)(lab) new! TDN
- Chlorophyll a (field filterlab)....chloride, calcium

CSLAP-Other Data Collection

- Air temperature
- Weather
- Lake Perception Form
- Health and Safety Observations
- Lake Management (harvesting, herbicides, dredging, etc.)
- Recreational Use
- Lake Level
- HABs



DEC Uses of CSLAP Data

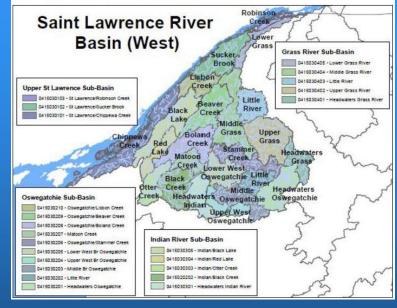
Identifying statewide issues

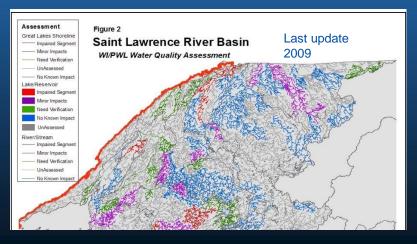
- Algae blooms and Algal toxins
- Effects of lake stratification (oxygen, internal loading, metals) TP bottom sample, some years Fe, As, Mn
- Impact of nutrients and development of numeric nutrient criteria
- Distribution of invasive species
- Assessing individual waterbodies
 - PWL (Priority waterbody list condition of waterbodies)

305b (WQ Assessments) 303d (impaired and TMDL development)

Surface Water Classifications

Class N, Class AA-Special (AA-S), Class A-Special (A-S), Class AA, Class A, Class B, Class C, Class D - Based on "highest use" of waterbody...drinking water (with or without treatment), recreational contact, food processing, fishing, fish/wildlife/shellfish propagation and survival.


https://govt.westlaw.com/nycrr/Browse/Home/NewYork/NewYorkCodesRulesandR egulations?guid=I06849fe0b5a111dda0a4e17826ebc834&originationContext=doc umenttoc&transitionType=Default&contextData=(sc.Default)&bhcp=1

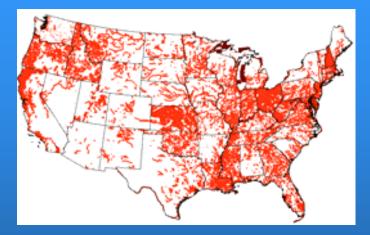

Waterbody Inventory-PWL

- State inventory of waterbodies relative to waterbody uses
- Volunteer monitoring data intimately connected to waterbody uses
 - Water quality indicators chosen to assess uses
 - Standardized lake perception data generated to evaluate uses
 - Sampling volunteers are lake users and in position to identify use impacts (swimming, fishing, boating, etc.)
- CSLAP data heavily used in PWL evaluations

- www.dec.ny.gov/chemical/36735.html

Saint Lawrence River Basin (West) HUC10 Watersheds

Waterbody Inventory-PWL- Lake OK

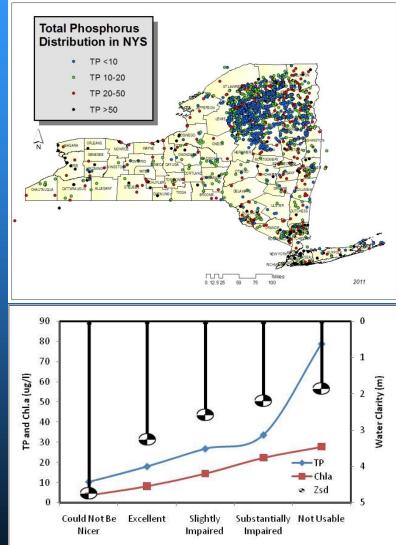

Waterbody Loca	ation Informatio	on			Revised: 11/13/2008
Water Index No: Hydro Unit Code: Waterbody Type: Waterbody Size: Seg Description:	SL-25- 7/P1- 3-1 04150303/060 Lake 168.4 Acres entire lake	7-P 9 Str Class:	С	Drain Basin: Reg/County: Quad Map:	Saint Lawrence River Indian River 6/Jefferson Co. (23) FORESTPORT (H-20-1)
10272 SANG 74003 12					
Water Quality P	Problem/Issue In	nformation		(CAPS indicate M	MAJOR Use Impacts/Pollutants/Sources
Water Quality F Use(s) Impacted NO USE IMPAIR		nformation Severity			MAJOR Use Impacts/Pollutants/Sources
Use(s) Impacted	MNT		j		
Use(s) Impacted NO USE IMPAIR	MNT				
Use(s) Impacted NO USE IMPAIR Type of Pollutant(s	MNT				

Further Details

Water Quality Sampling

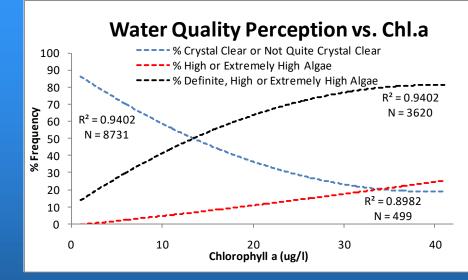
Lake of the Woods has been sampled as part of the NYSDEC Citizen Statewide Lake Assessment Program (CSLAP) beginning in 1994 and most recently from 1999 through 2005. An Interpretive Summary report of the findings of this sampling was published in 2006. These data indicate that the lake continues to be best characterized as oligotrophic, or highly unproductive. Indications of higher productivity in the most recent sampling year is likely within the range of natural variability. Phosphorus levels in the lake fall well below the state guidance values indicating impacted/stressed recreational uses. Corresponding transparency measurements significantly exceed what is the recommended minimum for swimming beaches. Measurements of pH typically fall within the state water quality range of 6.5 to 8.5. The lake water is weakly colored, but color does not limit water transparency. (DEC/DOW, BWAM/CSLAP, June 2006)

303d List- Not so Good


New York State Final 2010 Section 303(d) List June 2010								
Water Index Number	Waterbody Name (WI/PWL ID)	County	Туре	Class	Cause/Pollutant	Source	Year	
	ist of Impaired Waters							
	ollutants listed in Bold Type are new listings; i.e., they iority Waters, scheduled for TMDL/restoration strateg							
art 1 - Individual Wate	body Segments with Impairment Requirin	g TMDL D	evelopn	nent				
nt 158-6	Niagara River/Lake Erie Drainage Basin Gill Creek and tribs (0101-0002)	Niama	River	с	Amatic Toxicity	Urban Runoff, Contam. Sed	2004	
nt 158- 8-1	Bergholtz Creek and tribs (0101-0004)	Niagara	River	č	Phosphorus Pathogens	Urban Runoff Urban Runoff	2004 2004	
at 158-12- 6	Ransom Creek, Lower, and tribs (0102-0004)	Erie	River	С	D.O./Oxygen Demand Pathogens	Onsite WTS Onsite WTS	2004 2004	
at 158-12- 6	Ransom Creek, Upper, and tribs (0102-0027)	Eric	River	C(T)	D.O./Öxygen Demand Pathogens	Onsite WTS Onsite WTS	2004 2004	
it 158-13	Two Mile Creek and tribs (0101-0005)	Erie	River	в	Floatables D.O./Oxygen Demand	CSOs CSOs, Municipal	2004 2004	
nt 158-15	Scajaquada Creek, Lower, and tribs (0101-0023)	Eric	River	в	Pathogens Floatables D.O./Oxygen Demand	CSOs, Municipal CSOs, Urban Runoff CSOs, Urban Runoff	2004 2004 2004	
					Phosphorus Pathogens	CSOs, Urban Ranoff CSOs, Urban Ranoff CSOs, Urban Ranoff	2004 2010 2004	
nt 158-15	Scajaquada Creek, Middle, and tribs (0101-0033)	Erie	River	С	Floatables D.O./Oxyren Demand	CSOs, Urban Runoff CSOs, Urban Runoff	2010	
					Phosphorus Pathogens	CSOs, Urban Runoff CSOs, Urban Runoff	2010 2010	
at 158-15	Scajaquada Creek, Upper, and tribs (0101-0034)	Erie	River	в	D.O./Öxygen Demand Phosphorus	CSOs, Urban Runoff	2010 2010	
nt 158-E (portion 5)	Lake Erie (Northeast Shoreline) (0104-0036)	Erie	G.Lakes		Pathogens	CSOs, Urban Runoff Urban/Storm Runoff	2010 2010	
nt 158-E (portion 6) nt 158-E (portion 7)	Lake Erie (Main Lake, North) (0104-0037) Lake Erie (Main Lake, South) (0105-0033)	Erie Chautaoa	G.Lakes G.Lakes		Pathogens	Urban/Storm Runoff Urban/Storm Runoff	2010 2010	
at 158-E (portion 7a)	Lake Erie, Dunkirk Harbor (0105-0009)	Chautauqua	G.Lakes	В	Pathogens	Urban/Storm Runoff	2004	
nt 158E- 2- 1-P81b	Green Lake (0101-0038)	Eric	Lake	в	Phosphorus	Urban Runoff	2010	
nt 158E- 3	Rush Creek and tribs (0104-0018)	Eric	River	С	Pathogens Phosphorus	CSOs, Urban Runoff, Munic CSOs, Urban Runoff, Munic		
at 158.E-23-P152	Java Lake (0104-0004)	Wyoming	Lake	в	Phosphorus	Onsite WTS	2004	
⊨63-13- 4	Allepheny River Drainage Basin Chadakoin River and tribs (0202-0018)	Chautanana	River	с	Phosphorus	Munic/Ind. Urb Runoff	2008	
-63-13- 4-P122	 Chautanoni Rever and trios (0202-0018) Chautanona Lake, South (0202-0020)¹ 	Chastaugus		Ā	Phosphorus	Agriculture	2004	

- "Impaired" or "Precluded" waters cited on the WI-PWL list in NYS
- "Impaired water" list intended to require evidence of impaired uses
- Many water quality or waterbody monitoring programs do not evaluate uses
- Many programs do not have sufficient data to conduct TMDL/post-TMDL monitoring
- CSLAP data set used to identify 303d candidates (water quality data and use evaluation) and could be used for post-TMDL monitoring requirements
- Appx. 50% of all nutrient 303d sites in NYS identified through CSLAP

Someday.....NNC= Numeric Nutrient Criteria instead of "Guidance Values"


CSLAP data figures prominently in the (eventual) development of numeric nutrient criteria (NNC)

- TP, chl.a, water clarity distribution in NYS
- Relationship between NNC indicators and lake perception
- Relationship between NNC and algal toxins

What does CSLAP tell us about algae blooms?

- CSLAP perception data evaluates various levels of algae (question A)
- At chl a levels of about 15 ug/l, lakes are equally likely to be described as "crystal clear" or "not quite crystal clear" or "having definite algae greenness"
- At chl a levels of 20 ug/l, lakes described as having "high algae levels" more than 10% of the time
- Individual lakes "(mis)behave" differently (Skaneateles, for example)

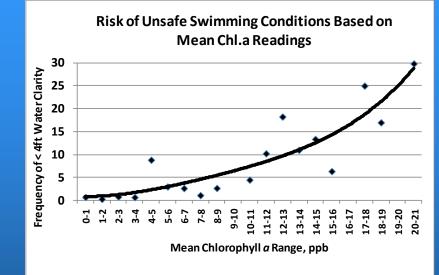


Note- regression lines are best-fit second order polynomials from 2 ug/I chl.a frequency intervals

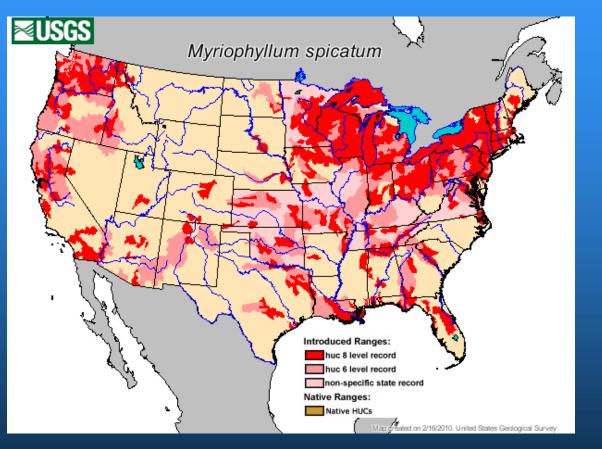
- (A) PLEASE CIRCLE <u>THE ONE</u> NUMBER THAT BEST DESCRIBES THE PHYSICAL CONDITION OF THE LAKE WATER TODAY:
- Crystal clear water
- 2. Not quite crystal clear- a little algae visible
- Definite algae greenness, yellowness, or browness apparent
- 4. High algae levels with limited clarity and/or mild odor apparent
- Severely high algae levels with one or more of the following: massive floating scums or streaks on lake or washed up on shore, strong foul odor, fish kills

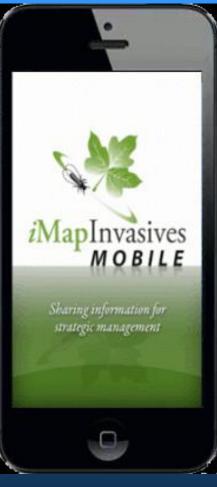
Algal Toxins and Chl a

MC-LR v FP Chl.a- All Samples


Recreational Impacts from Compromised Safety of Swimmers

New York State Sanitary Code Section 6-2.19.4.11.3 Physical Quality--Water Clarity states that:


 In all bathing areas, except the Great Lakes or ocean beaches, it shall be possible to see an eight-inch black-andwhite disk in four feet of water
 Criteria should be established to minimize the occurrence of 4 feet (= 1.2 meters) of water clarity
 Conditional probability analysis comparing mean chlorophyll a against


frequency of 4ft water clarity readings allow for choice of acceptable risk of unsafe conditions

Beyond Nutrients - Where are Aquatic Invasive Species in NY?

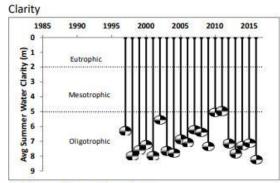
Road Salt Impacts

- A 2014 study of Lake George by the Darrin Fresh Water Institute showed a nearly three-fold increase over the course of three decades in the level of salt. The Lake George **Association's Citizen** Science Lake Assessment Program, too, has shown increases in salt and temperature readings.
- GWENDOLYN CRAIG Glens Falls Post Star and Adirondack Daily Enterprise Staff Jun 4, 2018

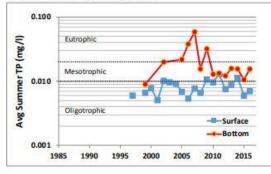
What Does Your CSLAP Report Tell You About Your Lake?

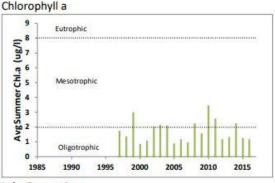
Butterfield Lake		Butterfield Lake Cottage Owners' Association		wn of Redwood	Jefferson County	
	N	Lake Character	ristics	Surface area (a Max depth (ft/ Mean depth (f Retention time Lake Classifica Dam Classifica	/m) t/m) e (years) tion	1005 / 407 48 / 15 14 / 3 2.3 B 0
	S.		Watershed Characteristics		Watershed area (ac /ha) Watershed / Lake ratio Lake & wetlands % Agricultural % Forest, shrub, grasses % Residential Urban	
		CSLAP Participat	tion	Years Volunteers	1986-2010 Walter Du Joseph Pa	
Trophic state	HABs Susceptibil	A-224-31	Invasiv Vulnerabi		asive	
Mesoeutrophic	Frequent bloom Moderate Suscep	Contraction of the second s	Invasives present, High Vulnerability		Stressed	

What Does Your CSLAP **Report Tell You About Your** Lake? (Millsite Lake)

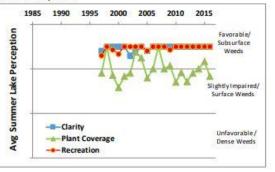

Water quality values for Millsite Lake for the 2016 sampling season. "Seasonal change" shows current year variability. Light red color indicates eutrophic conditions in top table and bloom conditions in bottom table.

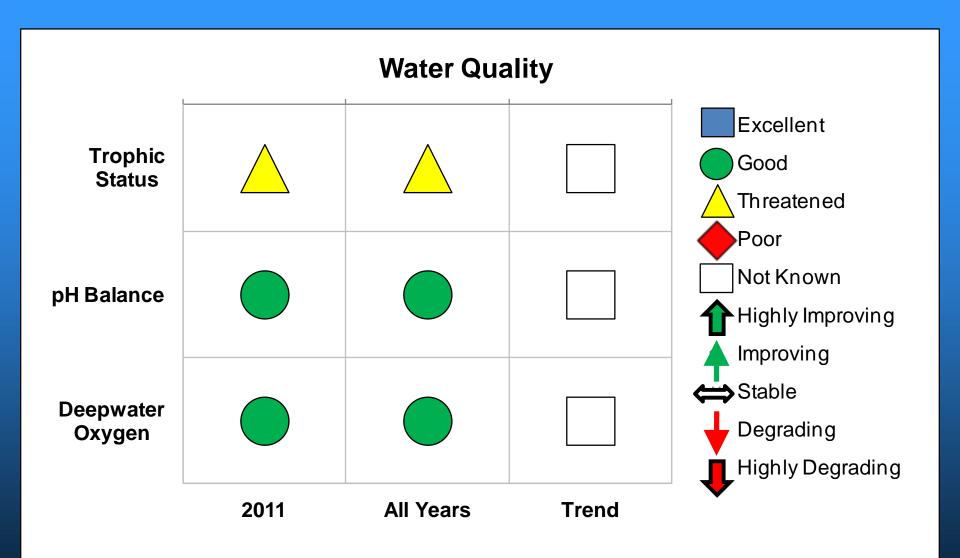
Open Water			201	6 Sam	pling Res	ults		Seasonal	Long	Long Term
Indicators	7/5	7/17	7/31	8/14	8/29	9/11	Ĵ.	change	Term Avg	Trend?
Clarity (m)	8.0	8.0	8.0	7.9	8.8	8.5		1	6.8	no
TP (mg/l)	0.006	0.007	0.009	0.007	0.006	0.007		~	0.008	no
Deep TP (mg/l)	0.015	0.020	0.016	0.015	0.013	0.015	a a	~	0.024	no
TN (mg/l)	0.241	0.382	0.239	0.357	0.236	0.239		\sim	0.384	no
N:P Ratio	42	53	27	53	37	33		>	46	no
Chl.a (ug/l)	0.9	1.0	0.8	1.5	1.9	1.0		~	1.9	no
рН	8.0	7.7	7.6	7.7	8.4	8.2	2	5	7.8	no
Cond (umho/cm)	94	88	72	73	79	101		V	91	no
Upper Temp (degC)	21	23	22	24	22	19		~	21	\checkmark
Deep Temp (degC)	5	5	5	5	6	5			7	$\downarrow\downarrow$
BG Chl.a (ug/l)	0	0	0	0	0	0			1	no
HABs reported?	no	no	no	no	no	no	2 2			6 N
Shoreline bloom and	HABs	notifica	tions	10 1	9	5	· · · ·			5a
Date of first listing Date of last listing				ng	# weeks on the DEC notification list # Weeks with updates					
- z						Sho	oreline HAB s	ample dates	2016	
HAB Indicators HAB criteria										

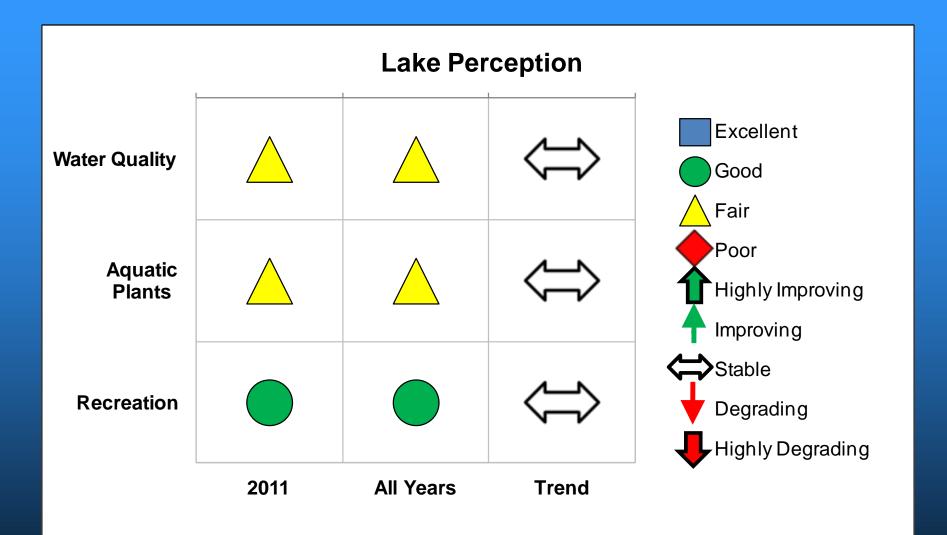

Date of first listing	Date of last listing	# weeks on the DEC notification list	# Weeks with updates			
13		Shoreline HAB sample dates 2016				
HAB Indicators	HAB criteria					
BGA	25 - 30 ug/L	No shareline UADs same	-1 2010			
microcystin	20 ug/L	No shoreline HABs samples 2016				
anatoxin - a	4 ug/L	а С				

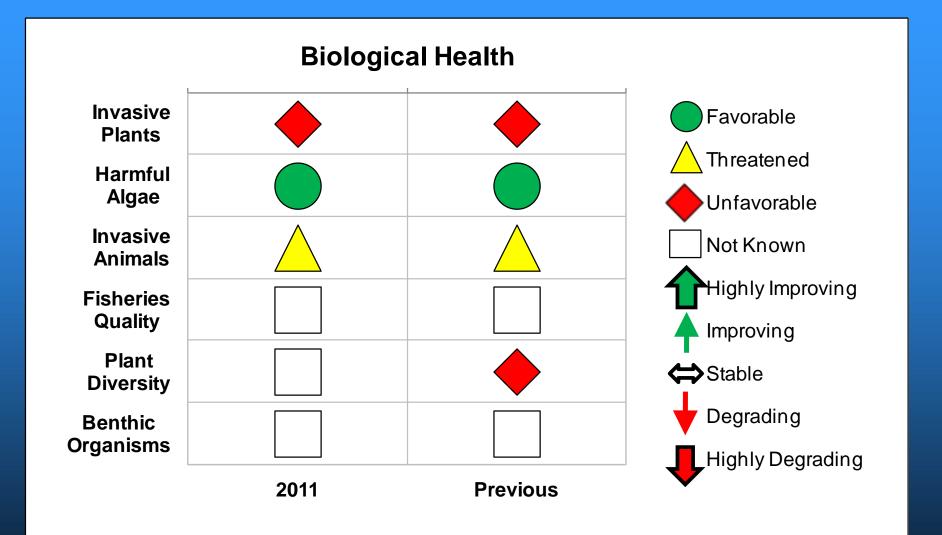

What Does Your CSLAP Report Tell You About Your Lake? (Millsite Lake)

Millsite Lake Long Term Trend Analysis

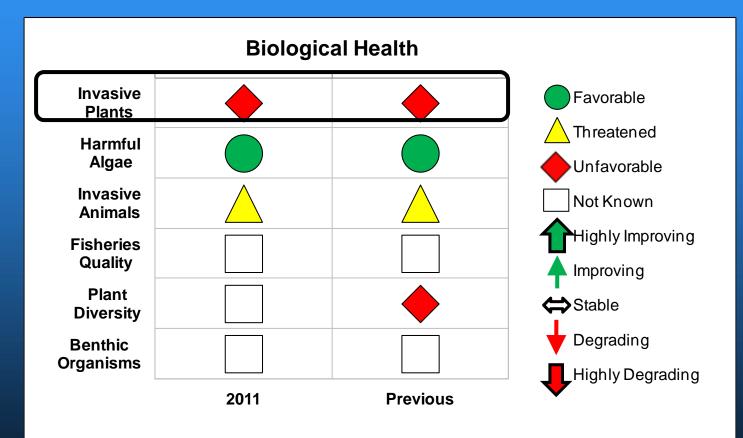




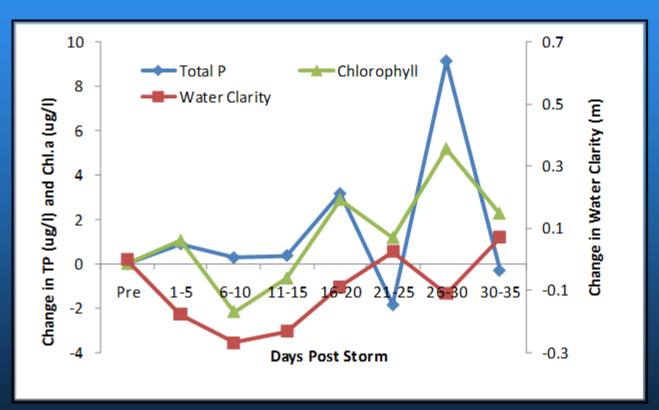




Lake Perception

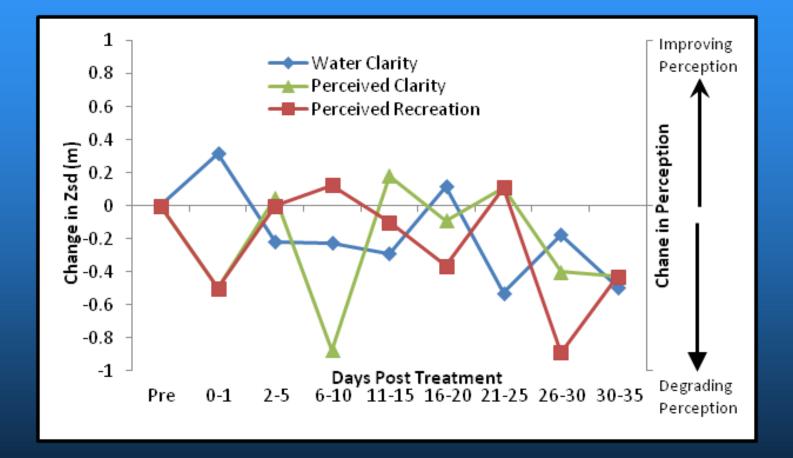

Lake association use of CSLAP data

How to focus management actions


- Susceptibility to zebra mussels? (Ca)
- Need for plant management?
 - Impact of plants on non-contact recreation
 - Location of AIS in nearby lakes
- Need for runoff/stormwater control
- Shoreline BMPs?
- Evaluate specific management actions
- Copper sulfate/algacides
- Aquatic plant management actions
- Watershed/septic/nutrient management actions (or inactions)

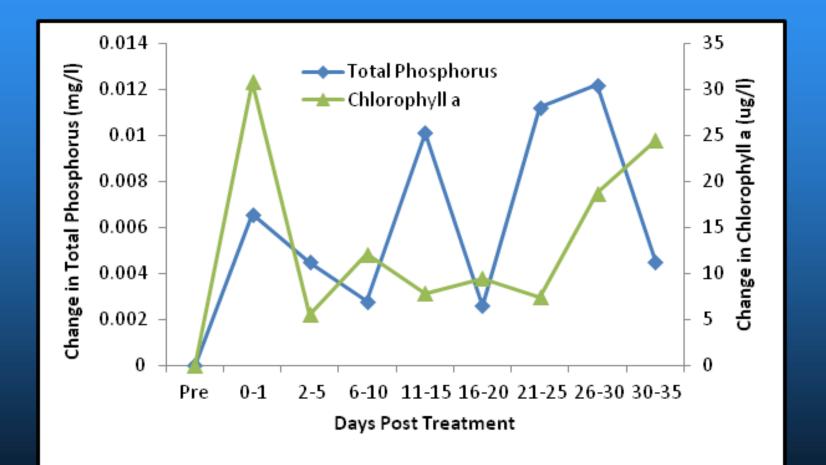
Susceptibility to Invasive Plants

Runoff Control: How does weather affect NYS lakes? What happens after storm events?

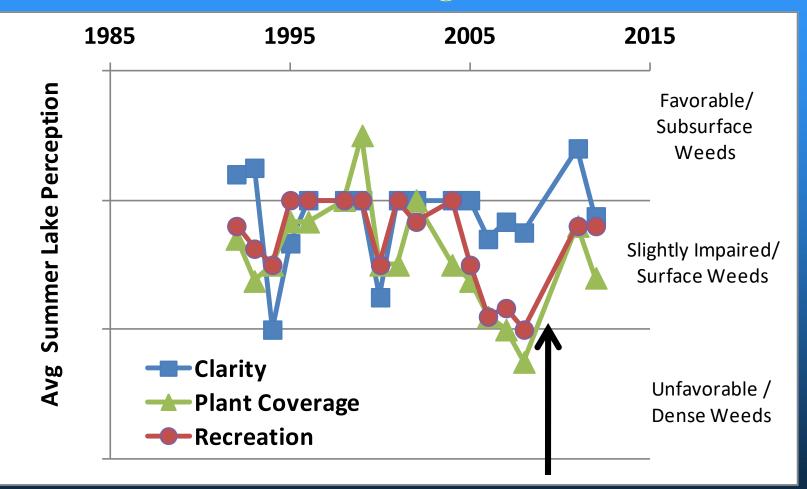


 Storm effects confounded by normal seasonal changes

 Water clarity changes likely attributable to turbidity

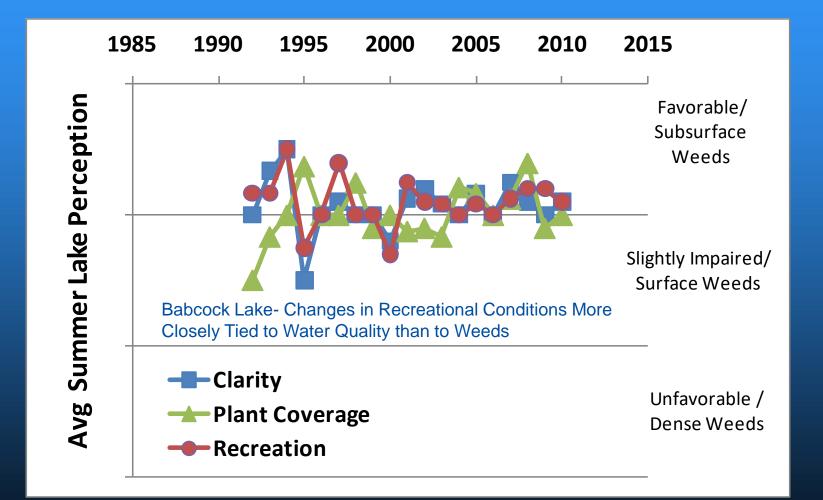

Storms are defined here as exceeding 1" in previous day or 2" within the last three days (for overlapping storms)

Evaluating Lake Management Actions-How Well Do Algacides Work?



(data from 14 CSLAP lakes)

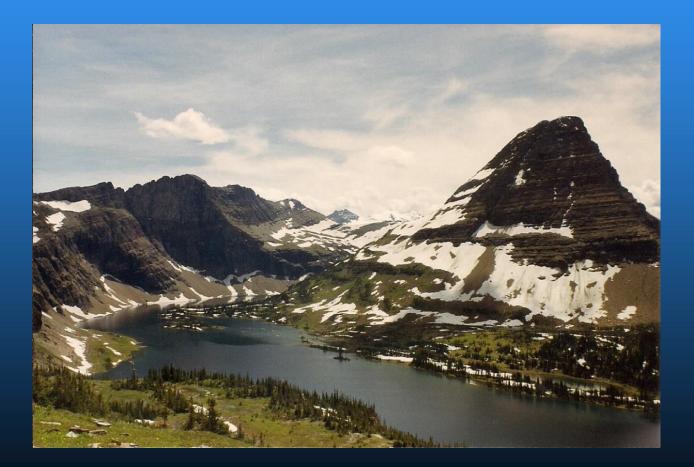
Evaluating Lake Management Actions-How Well Do Algacides Work?



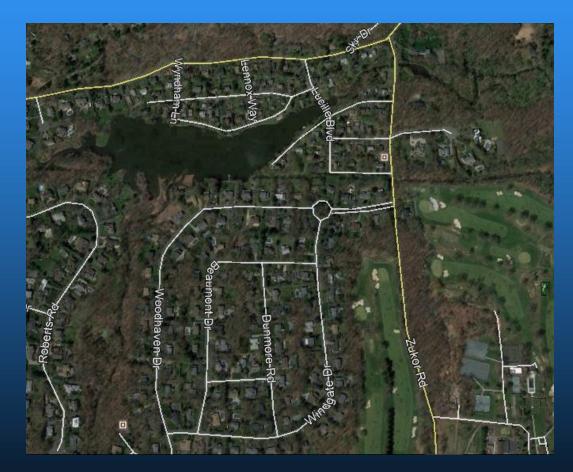
Evaluating Lake Management Actions-Plant Management

Cazenovia Lake- 2009 herbicide treatment

Evaluating Lake Management Actions-Recreational "Management"



Lake Associations Have Used CSLAP Data To:


- Establish sewer districts to reduce septic system loading (Ballston, Peach)
- Support aeration projects (Peekskill, Mohegan)

- Control aquatic invasive species (lots of lakes!)
- Comply with permitting requirements (herbicides, algaecides, etc.)
- Reduce road salt

Everyone wants their lake to look like this...

Even if the Watershed Looks Like This...

CSLAP Data Should Be Used to Support Management Practices to Keep Your Lake Healthy